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This article is devoted to the systematic study of additidgnah-isospectralsym-
metries of constrainedreducedl supersymmetric integrable hierarchies of KP
type—the so—callecSKP(R;MB,MF) models. The latter are supersymmetric exten-

sions of ordinary constrained KP hierarchies which contain as special cases basic
integrable systems such am)KdV, AKNS, Fordy—Kulish, Yajima—QOikawa, etc.

As a first main result it is shown that ai8K PRiMg Mp) hierarchy possesses two
different mutually (anti-)commuting types of superloop superalgebra additional
symmetries corresponding to the positive- and negative-grade parts of certain su-
perloop superalgebras. The second main result is the systematic construction of the
full algebra of additional Virasoro symmetries K P(R;MB M) hierarchies, which

requires nontrivial modifications of the Virasoro flows known from the general case
of unconstrained Manin—Radul super-KP hierarcltbe latter flowsdo notdefine
symmetries for constraineﬁKP(R;MBYMF) hierarchieg As a third main result we
provide systematic construction of the supersymmetric analogs of multi-component
(matrix) KP hierarchies and show that the latter contain, among others, the super-
symmetric version of the Davey—Stewartson system. Finally, we present an explicit
derivation of the general Darboux—&dund solutions for theSKP(R;MB Mp)
super-tau functiongsupersymmetric “soliton”-like solutionswhich preserve the
additional(non-isospectralsymmetries. ©2002 American Institute of Physics.

[DOI: 10.1063/1.1466533

[. INTRODUCTION

Supersymmetric generalization of integrable hierarchies of nonlinear evoligoliton” or
“soliton-like” ) equations is an actively developing subject whose main motivations come both
from theoretical physics as well as mathematics. In theoretical physersymmetris a funda-
mental symmetry principle unifying bosonic and fermionic degrees of freedom of infinite-
dimensional dynamicalfield-theoreti¢ systems which underly modern superstring theory as an
ultimate candidate for a unified theory of all fundamental forces in nature, including quantum
gravity. In particular, supersymmetric generalizations of Kadomtsev—Petvia@kRiliintegrable
hierarchy have been fouhfto be of direct relevance famulti-)matrix models of nonperturba-
tive superstring theory. Historically, the first supersymmetric integrable system, which appeared in
the literature, is the supersymmetric generalization of the Sine—Gordon equ&tidisequently,
the subject of supersymmetrization of KP hieraftHyand other basic integrable systems
(Korteweg—de Vries, nonlinear Schiinger, Toda lattice et~ ®attracted a lot of interest from a
purely mathematical point of view, especially, the supersymmetric generalizations of the inverse
scattering method, bi-Hamiltonian structures, tau-functions and Sato Grassmannian approach.

An important role in the theory of integrable systems is being played by the notiaddf
tional (non-isospectral) symmetrigghose systematic study started with the papers Ref. 17 and 18.
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For detailed reviews of the latter subject we refer to Ref. 19; see also Refs. 20 and 21 for a
systematic discussion of additional symmetries in the context of specific integrable models. Ad-
ditional (non-isospectralsymmetries, by definition, consist of the set of all flows on the space of
the Lax operators of the pertinent integrable hierarchy which commute with the ordinary isospec-
tral flows, the latter being generated by the complete set of commuting integrals of motion. As
shown in Refs. 22see also Ref. 23there exists an equivalent definition of additional symmetries
as vector fields acting on the space ofunctions (Sato Grassmanniarof the corresponding
integrable hierarchy. This latter formulation allows us to provide a simple interpretation of the
crucial Virasoro(andW 1, .,) constraints on partition functions @multi-)matrix models of string
theory as invariance of the-functions(i.e., the string partition functionsuinder the Borel subal-
gebra of the Virasoro algebra of additional non-isospectral symmetries in the underlying integrable
hierarchies of generalized Si)( Korteweg—de VriegKdV) type (similarly for the W,, ., con-
straints.

Recently, a deep relationship has been uncovered in Ref. 24 between additional symmetries of
KP hierarchy and fermionic representations of certain basleformed(“ q” standing for “quan-
tum group”) hypergeometric functions playing the role of correlation functions of quantized
integrable field theory models. Furthermore, the notion of additigmai-isospectralsymmetries
allows us to

(i) provide an alternative formulation of multi-componéntatrix) KP hierarchie® as ordi-
nary one-componeriscalaj KP hierarchy supplemented with appropiate sets of mutually
commuting additional symmetry flow(see Refs. 26 and 27

(i) provide an alternative formulation of various physically relevant nonlinear evolution equa-
tions in two- and higher-dimensional space—time as additional-symmetry flows on ordinary
(reduced KP hierarchies, the most interesting examples being Davey—Stewartson and
N-wave resonant systenisee Refs. 26—-29as well as Wess—Zumino—Novikov—Witten
models of group-coset-valued fielee Refs. 29 and 3@escribing various ground states
in string theory.

The main advantage of the above mentioned reformulation over the standard matrix pseudo-
differential formulation of multi-component KP hierarchi@nd their reductiondlies in the fact
that the new formulation allows us to employ the standard DarbougkiBad techniques in
ordinary scalafconstrainefiKP hierarchies in order to generate solitonlike solutions for the more
complicated multi-componeritmatrix) KP hierarchie$?®

The principal object of the present work is the important class of constrdneediced N
=1 supersymmetric KP hierarchies introduced in Ref. 14 and cal&b{P(R;MB,MF) models”
[see Eq.24)]. The latter are supersymmetric generalizations of the d&% ,, called “con-
strained KP models,” of reductions of ordinafybosonic”) KP hierarchy containing among
themselves a series of well-known integrable hierarchies su@medified KdV, AKNS, Fordy—
Kulish, Yajima—Oikawa eté~35 which are collectively described by ordinaf{posonic”) Sato
pseudo-differential Lax operators of the form

R-2 M
[/EERYM:(?R‘FE Ui&i‘FE (I)]aiquj (1)
i=0 j=1

We will work within the framework of Sato super-pseudo-differential calculus Nie- 1
superspace (cf. Sec. I). For alternative treatment of supersymmetric integrable hierarchies
within the framework of the superspace generalization of a Drinfeld—Sokolov Lie-algebraic
scheme we refer to Ref. 36, see also Refs. 13 and 37. Our main task will be the systematic
derivation of the full algebra of additional non-isospectral symmetrie§K)P(R;MB,MF) hierar-

chies. Our present approach is based on a superspace extension of the approach employed in Refs.
28 and 29 where the full algebra of symmetries of the above mentioned ordinary bosonic con-
strained KP hierarchiesKPg y (1) has been explicitly constructed. The latter turns out to be a
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semi-direct product of Virasoro algebri@ee also Refs. 21with the loop algebra {(1)
e SL(M)), ®(SL(M+R))_ where the subscripts®) indicate taking the positive/negative-grade

parts of the corresponding loop algebras and the fadig1}). corresponds to the usual iso-
spectral flows. For the supersymmetric constrained KP hierar&e3g v, v we find the full
symmetry algebra, i.e., the algebra of Manin—Radul isospectral flows together with the additional
non-isospectral symmetries to be a semi-direct product of Virasoro algebra with more complicated
superloop superalgebrasith half-integer loop gradingof the form given in(69)—(71) and(106):

(GL(Mg,Mg)) @ (GL (N+r+1N+r+1))_ 2

for SKPRrMg M) hierarchies which are defined by fermionic super-Lax operators Rat2r
+1, Mg+Mg=2N+1, and

(étMB,MFﬁ@(étr'\Hr,NHL )

for SKP(R;MB,MF) hierarchies defined via bosonic super-Lax operators wRet@r, Mg+ Mg
=2N. Here again the subscriptst( indicate taking the positive/negative-grade parts of the
corresponding superloop superalgebras, whereas the prini{gs amd (3) indicate factoring out
the unit super-matrices in the pertinent integer-grade subspaces.

Let us stress at this point that the superloop superalgebrslGN,) [see(69)—(71)] ap-
pearing in(2) and in what follows, are more general objects than the notion of superloop algebras
introduced in Ref. 38 in that the former possess one more Grassmannian grading. Also, let us point
out that similarly to the ordinary “bosonic” caée®® the construction of consistent additional
Virasoro symmetries foSKP(R;MB Mp) hierarchies requires nontrivial modification of the straight-

forward superspace extensfor of the well-known Orlov—Schulman additional symmetry fléfvs
for the general unconstrained unconstraifgapersymmetricKP Hierarchy. The latter flows do
not define symmetries for constrainelipersymmetricKP hierarchies, since they do not preserve
the constrained form of the pertinefsupej-Lax operatorgsee Sec. IX

The plan of exposition in the present article is as follows. In Sec. 1l we briefly recapitulate the
main ingredients of the super-pseudo-differential operator formulation of the general uncon-
strained Manin—RaduN =1 supersymmetric KP hierarchy, including the superspace extension of
such basic objects aadjoint super-eigenfunctions and supersymmetric squared eigenfunction
potentials. In Sec. lll we first briefly recall the main properties of the C&KEP(R;MB,MF) of
reductions of the original unconstrained Manin—Radul super-KP hierarchy. In particular, we recall
the nontrivial modification of the original Manin—Radul fermionic isospectral flows which is
required for consistency of the latter with the constrained form of the pertinent super-Lax opera-
tors definingSKP(R;MB,MF) hierarchies. Also in Sec. Ill, we present briefly the superspace exten-

sion of the pseudo-differential treatmé&hof inverse powers ofsuperjLax operators. In Sec. IV

we describe briefly the general formalism for studying of additional non-isospectral symmetries of
supersymmetric integrable hierarchies which is the superspace extension of the formalism pro-
posed in Ref. 22a in the purely “bosonic” case.

The main results of the article are contained in Secs. V-X. In Sec. V we provide the explicit
construction of the positive-grade part of the superloop superalgebra of additional symmetries for
constrained super-KP hierarchies defined by fermionic super-Lax operators, and the same con-
struction is done in Sec. VI for the case of constrained super-KP hierarchies defined by bosonic
super-Lax operators. Section VIl presents the construction of supersymmetric analogs of multi-
componentmatrix) KP hierarchies out of one-componeistalay SKPRriMg.Mp) hierarchies by

adding to the latter of an infinite subset of additional symmetry flows spanning Manin—Radul flow
algebra. In particular, we find the supersymmetric extension of the Davey—Stewartson system
which is contained as superspace additional symmetry flow WW(R;MB,MF) hierarchies.
Section VIl is devoted to the construction of the negative-grade part of the superloop superalge-
bra of additional symmetries for constrained super-KP hierarchies. In Sec. IX we provide the
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correct Virasoro algebra of aditional symmetries for constra'@KcP(R;MB Mp) hierarchies via a

nontrivial modification of the naive superspace generalization of Orlov—Schulman additional sym-
metry flows for ordinary “bosonic” KP hierarchy. Finally, in Sec. X we identify the explicit form

of Darboux—Baklund transformations for constrained super-KP hierarchies which produce solu-
tions to the same hierarchies, i.e., which anéo-Darboux—Baklund transformations. Further, we
construct the general supersymmetric DarbousxekBand solutions for the superspace tau-
functions ofSKP(R;MB'MF) hierarchies with the additional property of preserving the additional

non-isospectral symmetries. These solutions are the superspace analogs of the solitonlike solutions
in the ordinary “bosonic” case.

II. BRIEF ACCOUNT OF THE GENERAL MANIN-RADUL SUPERSYMMETRIC KP
HIERARCHY

We shall use throughout the super-pseudo-differential caltaliin Ref. 14 with the follow-
ing notations:d= d/dx and D= 9/ 90 + 6 9l Ix denote operators, whereas the symbgland D,
will indicate application of the corresponding operators on superfield functions. As ugy@), (
denoteN=1 superspace coordinates afid=g. For any super-pseudo-differential operaér
=2jaj,2Dj the subscripts£) denote its purely differential parb4(+=2120aj,22)j) or its purely
pseudo-differential partd_=ZX;-,a_;,D '), respectively. For anyA the super-residuum is
defined askes4d=a_ 1;,. The rules of conjugation within the super-pseudo-differential formalism
are as follows? (AB)* =(—1)BIB* 4* for any two elements with paritiefA| and |B;
(34* =(— 1)k, (D¥)* =(— 1)K+ D2Dk andu* =u for any coefficient superfield. Finally, in
order to avoid confusion, we shall also employ the following notations: for any super-
(pseudopdifferential operatord and a superfield functiofi, the symbolA(f ) will indicate ap-
plication (action of A on f, whereas the symbolf will denote just operator product of with
the zeroth-ordefmultiplication) operatorf.

The general unconstrained Manin—RadiL#1 supersymmetric KPMR-SKP) hierarchy is
given by afermionic superspace Lax operatdr,

oo oo

L=D+fo+ >, bjo D+, f07), (4)
=1 =1

expressed in terms of leosonic“dressing” operatorn/V,
L=WDW~™L, W=1+2 w;,D =1+ ;9 D+ B, (5)
=1 =1 =1
whereb; , ; are bosonic superfield functions wherdasa; are fermionic ones and where
fo=2a1, b1=—Dyay, f1=2ar—a1Dya;—2a181—DyPs,
by=Dy(— ap+ a1 By) +(Dyay)?, (6)

and so on. The square @f (4) is a bosonic super-pseudo-differential operator of the form

£2=W(3W71=(9+2 Uj/szii7 (7)
=1
Upp= — dya1=Dyhy, U= —dxB1+ aydyay=2b,—bi+Dyfq, )

and so on.
The Lax evolution equations for MR-SKP réad
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J _ 2| _ 21
a—tlﬁ— [£Z, L]=[L%, L], 9)
D,L=—{L£* Y ci={c?>t r1-227 (10)
J
—W=—WdWwH_w, DW=-WD>w1_w, (11

at,

with the short-hand notations for the fermionic isospectral fl@ys(d/dt, being the bosonic
isospectral flows

d d d

Dp=-7— > 6=, {Dy, D}=-2
n &0n &4 k&tn+k_1 { k |}

) 12
My1-1 123

(t,a)E(t]_EX,tz,...;6,01,02,...). (13)

The super-Baker—Akhiezésuper-BA and the adjoint super-BA wave functions are defined
as

P, N, =W ON, 7)), AL ON, =W Y Qt, o0, 7)) (14

(with 7 being a fermionic “spectral” parametgrin terms of the “free” super-BA functions:

YEAL BN, )=yt 0N, )= SN, (15
ELON, ) =2 N+ 96+ (7—16) 2 \""14,. (16)
=1 n=1

For the latter, it holds
J _ _
ot VBA= B, DavEA=D5" Uek= 3 "D o 1”
Because 0f17), (adjoint) super-BA wave functions satisfy
Jd
(LU= NIE), SR == D, Dl ==L P, (19

Unlike the purely bosonic cagé the superspace tau-functiatgt, 6) is related to the super-BA
function in a more complicated manrle®n the other hands(t, 6) is simply expressed through
super-residua of the pertinent super-Lax opergdopas follows:

J
ReSCZk=ID9 Inr, ResL? 1=D,DyInr. (19
k
A basic object in our construction is the notion(effjoiny super-eigenfunction®(t,) and
W (t,0), whose defining equations read

d

m<b=£i'<<b>, D, ®=L3""ND); iw:—(ﬁz'mw D W=— (L2 H)* (P).
|

at,
(20

Following the line of argument in Ref. 42 for the purely bosonic case, one can prove that any
(adjoind super-eigenfunction possesses a supersymmetric “spectral” representation:
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‘I>(t.0)=fdkdnso(kyn)wm(t,é’;)\,n), ‘I’(t.0)=fdhdnsv*(h.n)lﬂEA(t,H:k,n),
(21)

with appropriate superspace “spectral” densitigd\, ) and ¢* (\,#). In particular, from(18)
we note that the(adjoiny super-BA functions are special examples @djoinY super-
eigenfunctions which in addition t20) satisfy spectral equations—the first E8).

In what follows we shall encounter another basic object of the fdmjl@\If)
=D6(9;1(<I>\If) where®,V is a pair of super-eigenfunction and adjoint super-eigenfunction. Simi-
larly to the purely bosonic cadeone can show that application of inverse derivative on such
products is well defined. Namely, there exists a unique superfield function—supersymmetric
“squared eigenfunction potentiasuper-SEP S(®,V) such thatD,S(P,¥)=dW¥. More pre-
cisely, the super-SEP satisfies the relations

Jd
IS(cb,\p)=7zes(7>*1\1f.52kc1>D*1), D,S(®,¥)=RegD WL oD 1). (22
k

In particular, Eqs(22) for k=1 andn=1 read

WS(P,W)=Res(D "WL?PD H=Dy(®V¥), D;P,¥)=ResD 'WLOD H=DV.
(23

It is in this well-defined sense that we will be using in the sequel inverse superspace derivatives
D;1=D93*1 acting on products of super-eigenfunctions with adjoint super-eigenfunctions.

IIl. CONSTRAINED SUPERSYMMETRIC KP HIERARCHIES. INVERSE POWERS OF
SUPER-LAX OPERATORS

A. SKP(rimg mp hierarchies

In Ref. 14 we introduced a class of reductions of the original MR-SKP hierarchy, called
SKP(R;MB,MF) constrained super-KP models, which contain the supersymmetric extensions of
various basic bosonic integrable hierarchies suchnasdified Korteveg—de Vries, nonlinear
Schralinger (AKNS hierarchy in general Yajima—Oikawa, coupled Boussinesg-type equations,
etc. TheSKPr;m, m,) hierarchies are defined by the following superspace Lax operatersill
use slighty different notations from Ref. 14

R—-1 M
£E£(R;MB,MF):DR+E vjpDI+ 2, & DM, M=Mg+Mg, (24
<o <1

whereMg ¢ indicate the number of bosonic/fermionic super-eigenfunctibpentering the purely
pseudo-differential part Ot(R;MB'MF)' SKPRriMg Mp) hierarchies defined by fermionic/bosonic
super-Lax operator$24), for which R=2r+1, M=Mg+Mg=2N+1 and R=2r, M=Mg
+Mg=2N, respectively, will be called in what follows “fermionic”/“bosonic” hierarchies for
brevity.

One of the main results in Ref. 14 was to show that the original fermionic flayv&L0) for
the general unconstrained MR-SKP hierarchy do not anymore define consistent flows on the space
of fermionic constraineKPru, m.) hierarchies, i.e., the odd flowd0) do not preserve the
constrained form of fermionic super-Lax operatores L(r:mg M) (24). We found the following
consistent modification fobD,, :

DnL= _{ﬁz—n_l_XZn—la‘c}:{‘cin_l+X2n—1!£}_2’62”’ (25

where
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M n-2
Xon-1=22, (D)1 3 £207973(0) DL (W), (26)
D®i= L2 (@)= 2L 1)) + X 1(Dy), 27
DW=~ (L2 HA(T)+2(L271)* (W) = (Xon-1)* (W), (28)

with the subscripti| in Eq. (26) and below denoting the Grassmann parity of the corresponding
(adjoind super-eigenfunctio®; , ¥;. The modified fermionic isospectral flovizs, (25) and(26)
obey the anticommutation algebra:

{Dn, Dm}:_za/atR(n+mfl)- (29)

whered/ gt are the bosonic isospectral flows 6= LrMmg Mp)

]
a—tlﬁ=[(£2”R)+ L] (30

In checking the consistency of the nedy,-flows an extensive use is made of the following
superspace pseudo-differential operator identities:

Zii Z(k,l):Z(i,j)(®k)D71q’|+(_l)‘jl(‘kH“Hl)q)i,D7lz?k,l)(\pj)y (31

where Z(k',)Ed)kD‘l\If,. They will turn very important in our symmetry-flows construction
below. In particular, using identitie@1) we get the relations

M K-1
(L) =Ll mp)-= 2 2 (~DHLETT(0)DHLY)* (W) (32

for the purely pseudo-differential part of arbitrary positive integer power of a fermionic super-Lax
operator(24).

In the case of bosonic constrainéiKP(R;MB,MF) [i.e., R=2r and M=Mg+Mg=2N in
(24)], we can split the set of super-eigenfunctions entering the negative pseudo-differential part of

(24 in bosonic{(l)a,llfb}zgjl and femionic{&)b,{ffa ngl subsets, respectively, so that the

expression(24) acquires the form
Mg Mg
|—EE(2r;MB,MF)|l\/|B+lv|F:2N:|—++a§1 ‘DaD_l‘I’a+t)21 O,D MWy, (33

Henceforth we will use the short-hand notatibrto indicate bosonic super-Lax operatd&s).
Before proceeding let us recall that in the case of bosSrMcP(R;MB,MF) hierarchies there is no
need of modification25) and (26) of the original MR-SKP fermionic isospectral flovizs, (10)
since they preserve the constrained form of the bosonic super-Lax op&atamlike the case
with fermionicSKP(R;MB'MF) hierarchies:

%L=[<L>'”+ L1, DpL=[(L)3" ¥ L], (34)
|

(~) (~) (~) (~)
Dn®,=(L)3" ¥ (d,), D,V,=—(L2"¥2)X (¥ ). (35)
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Note that the 2th rootLY? of the bosonic super-Lax operat®3) (and similarly for the higher
(2n—1)/2r powers thereqfis a fermionic super-pseudo-differential operator of the general
Manin—Radul form(4) whose coefficients are determined recursively from the relatidff’()?"
=L.

We will also need the explicit expressions for inverse power$ KP(R;MB,MF) super-Lax
operatorg24). Following the same lines of the construction in Ref. 40 of inverse powers of KP
Lax operators in the purely bosonic case, we can represent the super-Lax of#tats a ratio
of two purely super-differential operatols ;o r+my and L(ym of orders 1/2R+M) and
1/2M, respectively:

Lnsrstbnt g, M=Mg+Me=2N+1, R=2r+1,

Lr:M, M )=L(l/2)(R+M)LI/%M= 1
Mg Mg Luslyl, M=Mg+Mp=2N, R=2r,

(36)
where the first line refers to fermionic super-Lax operator and the second line refers to bosonic
super-Lax operator, respectively. According to Ref(se also Refs. 10 and Y15any super-

differential operators y (bosonic, of integer ordgandL . 1> (fermionic, of half-integer order
can be parametrized through the elements of their respective kernels:

Ker(Ly) ={¢0, @12, ", @n-1,ON- 12}, K€Lyt 12 ={®0, @12, ON-1,ON- 172, ON}

as follows:
_ 7{2N-1)2N-2), . .4{1) 410) _ 7(2N){(2N-1), .. 4(1) 410)
L T(‘PN 1/27(‘PN 1 T(‘PllzT(‘Po LN+ 12~ T( 7—EPN 12 7—2’1/27(4’0 (37)
with the notations (=0,1,..,2N)
) = )Pl 1 (i) i-1) i-2). 1) #0) .
T =eD(ef) Y =70 ) T4 2 T TN gip0). (39)

Integer/half-integer indices of the corresponding elements of the kernels indicate that the latter are
bosonic/fermionic, respectively. On the other hand, all super- funcw@,ésn (38) are hosonic for
any indexj. As shown in Refs. 10 and 15, the obje¢tj‘$2 have explicit representations as ratios
of Wronskian-type Bereziniansuper-determinankgsee also Sec. X
Furthermore, as in the purely bosonic c&%ene can show that the inverse powerlgf is
given as

=a§1 [0aD Yot D Nl 39

where the set of super-functiofs,, ,aa}gzl is spanning Kei(y), whereas the super-functions

{¢, ,~l/fa}§=1 span Kerly)—the kernel of the adjoint operator, and where we have split explicitly
the corresponding kernel elements into bosonic and fermi@miticated by “tilde”) subsets.

B. Inverse powers of bosonic super-Lax operators

We are now ready to write the explicit expressions for inverse powers of the super-Lax
operatorg24) [cf. Eq.(36)]. We start with the bosonic super-Lax operatﬁfﬁ;MB Mp) (33) where

R=2r, M=Mg+Mg=2N. Henceforth we will use the short-hand notatibEE[,(R;MB,MF) for
the latter. Taking into accouri89) and the identitie$31) we obtain

N+r

L‘1=LNLair=ﬁ; [Ln(@p)D Mg+ Ln(30) D~ Lysgl, (40)
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where the sets of super-functiofig,, goﬁ}’\'+r and{zpﬁ wB}N” span the kernels Kel(.,) and
Ker(L{.,), respectively. For later convenience it is useful to introduce the following short-hand
notations:

Oy =L M D(Ly(pp), W MW=L (), “D
Y M= M DL (), TG M=(LTMD)* (), (42
wherem=1,2,.., andg=1,2,..,N+r. Note that the superfunctions {41) and(42) are bosonic

and fermionic, respectively. In terms of the short-hand notatiddsand (42), we can write the
explicit expression for arbitrary integé&=1 inverse power of. generalizing(40) as

N+r K
_K:‘lgl 521 [(b(ﬁ_K_1+S)D_1\P(ﬁ_5)+q)(ﬁ_K_:H—S)D_l\I’I(B_S)]' (43)

The latter equality is completely analogous to the expression for the purely pseudo-differential
part of arbitrary positive integer powers bf[cf. Eq. (32)]:

K Mg Mg
LK:E:L 21 (I)giK+1*S)rD71\I}(aS)+b21 CI)E)K+173)D71\I,E)S) , (44)
s=1 | a= =

where we introduced another set of convenient short-hand notations simiit)tand (42):
OM=L" (@), WV=(LMH* (W), BEV=L"HDy), WV=(L"H*(T,),
(49

withm=1,2,..,a=1,... Mg andb=1,... M. The derivation of both Eq$43) and(44) is based
on systematic use of identiti€81).

In what follows an essential use will be made of the following simple consequences from the
definitions of the corresponding objects above:

() (~) (~) ()
L(Ln( @ p)=0, L*( 4 =0, L7 D,=0, (L H*(¥,=0, (46)

or, more generally, for the objects defined(#1), (42) and (45):
(~) (~)
LK@ §™)=0, (L)XW §™)=0,

4
(~) (=) @7
L% M)=0, (L*) (¥ {)=0 for any K=m.

For later use we also observe that the supersymmetric isospectral flow equations written for
the inversel ~! of the bosonic super-Lax operat@t0),

_L 1_[(Lllr) L*l], Danlz[(L(anl)/Zr)+,L*l], (48)

(~) (=)
straightforwardly imply[upon using identitie31)] that the super-functions® (=™ , ¥ (=™}
(41) and(42) entering the various inverse powé#s) of L (33) are(adjoiny super-eigenfunctions
(20) of the latter:

9 =) =) =)
g P8 U= (@), D@ = (LETNE) (o[,
(49)
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g (

~) (~) (~) (~)
G VE M= (LN@L™), D@ = - (LETIE T (0 (),

[cf. Egs.(57) for the analogous result in the case of fermioBiK Pir;u, m.) hierarchieg

C. Inverse powers of fermionic super-Lax operators

Repeating the same steps as in the derivation of Ef}.and (43), we obtain the explicit
expressions for the inverse powers of fermionic super-Lax operé2dys

-1_ -1
L _LN+ 1/2LN+r+l
N+r+1

= 21 [Lns 1 00) D at Lt 14 ®a)D " 1ib]

a=

2(N+r+1)
= 2 4D ', (50)
2(N+r+1) K—1
E_K: IZ:L 520 (_1)5\I\¢|(-(K—l—s)/2)p—1¢,|(—S/2)’ (51)
where
{(Pa1‘¢a}§i£+lz{¢l}lzg\i+r+l)’ {lr/la!://a}gii+1z{¢ll}I2:N].+r+l) (52)

span the kernels Kel(. 1) and Ker(y.,.,), respectively, and where we have introduced
further short-hand notations analogoug4d), and(42) and (45):

d=Lns @), o P=L7(g), T P=(L7 ) (), (53
D P=L/(®)), WP=(L)* (). (54)

Furthermore, similar tq46) and (47), the following relations hold for fermioniSKP(R;MB,MF)
hierarchies:

L(¢)=0, L*(¢)=0, L H®)=0, (L H*(¥)=0. (59

Acting with the isospectral flows/dt, andD,, on the inverse powers of the fermionic super-Lax
operator(50) [cf. (25 and(30)],

J
LTI L7, DL { =L Xy, £7H, (56)
|

and taking into account identitie@81) together with(55), we deduce that the sets of super-
(~) (=)

functions{¢,}={L,; 1 ¢ o)} and{y,}={ ¢ ,} are(adjoiny super-eigenfunctions of the fermi-

onic SKPr;m, v, hierarchy[cf. Egs.(27) and (28)]:

J

a—tlczsl:ﬁ%’%l), Dn=[L3 4+ Xon_11()),
; (57)
o= —(L2RY* (), Dpy=—[(L2 Y% +X5,_11(¢h).
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(=) (~)
Analogous result holds also for the super-functiohf ™ (41) and ¥ f)’ M (42), connected with
the bosonicSKPrw, m,) hierarchies33) [see Egs(49) in Sec. VI|.

IV. ADDITIONAL SYMMETRIES FOR SUPER-KP HIERARCHIES: GENERAL FORMALISM

Bosonic/fermionic flowssg ¢ on the space of Sato super-pseudo-differential Lax operétors
(4) or, equivalently, on the space of Sato super-dressing openaidfs are definedsimilarly to
the purely bosonic case, see, e.g., Ref.)2Raterms of bosonic/fermionic super-pseudo-
differential operators\g ¢ by

0gL=[Mg,L], OSeL={Mg,L};, JgeW=MpgeWV, (59

whereMg ¢ are bosonic/fermionic purely super-pseudo-differential operators. Adlow(58) is
a symmetry of MR-SKP hierarchy if and only if {anti-)commutes with the isospectral Manin—
Radul flows, which implies

J
(TtMB,F:[(ﬁZI)JHMB,F]—: (59
|

DpMp=[(L2" 1, Mgl-, DyMe={(L" 1), , Me}_. (60)

In the case of fermionic constrain&KPr.u, v, hierarchieg24), Eqs.(60) are modified due to

the modification(25) and(26) of the fermionic isospectral flowd , (see Sec. ¥
Extending the construction in Ref. 22 to the supersymmetric case, one can show that the
general form ofMg ¢ obeying(59) and(60) can be represented in terms of as follows:

Mg = f d\dndudn, pe (N, 715 0, 72) Yea(t, 0, 72) D~ HUE AL 0N, 71)

— (B,F) -1
= c DD Wy, 61
P%:sf PQ TR 3 (61

wherepg (N, 71; 1, 772) is an arbitraryin the case of the general MR-SKP hierarc¢#y] double
Laurent series i and . In the second equality above, the sums run in general over an infinite
set& of indices, and®p, Vp}p. ¢ are(adjoiny super-eigenfunctions of the super-Lax operaipr

i.e., satisfying(20) for ®=®, and¥ =¥ . The second equality if61) arises from the general
representation of the “bispectral” density:

pe (N, 10, 772) = Pg : C(PBQF) eql e, 72) Pe(N, 171) (62

with c(pBéF) being constant matrices, in terms of basis of superspace fungligs(s\.,n)} and
{#¥p(\,7)} (Laurent series iM\), taking into account the spectral representation (&join
super-eigenfunctiong1).

We need furthermore to define the actiondgfe-flows on(adjoiny super-eigenfunctiong0).
First we note from(18) and the last of EqY58) that 6 r s = = (Mg g) *)(¢s)). For general
(adjoiny super-eigenfunctions we have

S pP=Mgp(®)+FBF, 5 W =—(Mgp)*(¥)+G°F, (63)

where the inhomogeneous ter$F andGBF are other(adjoint super-eigenfunctiongspecial
examples are Eq€27) and (28)]. The emergence of additional nonhomogeneous terms on the
r.h.s. of Eqs(63) is due to the nontriviafin general action of 6 ¢-flows on the pertinent spectral
densities in21). The form of the latter nonhomogeneous terms is not arbitrary in general. Namely,
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when® andV are(adjoiny super-eigenfunctions entering the negative pseudo-differential parts of
the super-Lax operat@24) or its inverse power&0) and(51), then the additional term&®F and
GBF in (63) are determined uniquely from the consistency of the flow actf8) with the
constrained form ofZ (24). Explicit construction of(63) with consistent nonhomogeneous terms
will be given in the next sections.

Finally, we find for the transformation of the super-tau-functid®) under the action of
bosonic/fermionic symmetry flows

) €

SgrInT=D, (ResMgg)= Pg . cSyD, (DVp). (64)

V. SUPERLOOP SUPERALGEBRA SYMMETRIES OF CONSTRAINED SKP
HIERARCHIES: THE CASE OF FERMIONIC SUPER-LAX OPERATORS

We now proceed by constructing the explicit form of additional symmetry generating super-
pseudo-differential operatorstg ¢ (61) in the case of fermionic constrain&k PRiMg Mp) hier-

archies(24), i.e., with super-Lax operatos= L m.) being fermionic(recallR=2r+1,M
EMB+MF:2N+1)

M /=1
)— 2: A(//Z) 2 1)S(|j|+/)£/7175(q)j)p71(53)*(\110, (65)
M /=1
MED= 3 FPZ (DAL @)D THLY (V). (66)
where/=1,2,... . HereA "/ and £/ are graded constant matrices of the following types:

(a) For /= 2n the matrices4 ™ and F(" are purely bosonic and purely fermionic elements,
respectively, belonging(as a vector spageto the superalgebra GMg,Mg) of graded
(Mg,Mg)X(Mg,Mg) matrices:

Mm 0 B(M
A(n):( 0 D(”)>’ ]:(n):(c(n) 0 ) (67)

Here the block matricea™, B(™, C(M andD™ are of sizeMgX Mg, MgX Mg, MgX Mg and
MgX Mg, respectively.
(b) For #/=2n—1 the matricesd ("~ 2 and ("~ 2 gre purely bosonic and purely fermi-

onic elements, respectively, belongifas a vector spageo a_(MB ,Mg)—the superalgebra of
(Mg,Mg) X (Mg,Mg) graded matrices in the “twisted” basighe diagonal blocks are fermionic,
whereas the off-diagonal blocks are bosonic; for a general discussion of nonstandard formats of
matrix superalgebras, see Ref)43

B(n— 1/2) 0 0 A(n— 1/2)

F-12)= 0 cin- 1/2)) , AN UD— ( D(n— 172) 0 . (68)

In this case the sizes of the block matriced~ 12, B("=12) c(=12) and D"~ 12) gre My
XMg, MgXMg, MeXMg andMegX Mg, respectively.

Thus, all graded matrice®7) and (68) are special positive-grade elements of a superloop
superalgebraAG(LMB,MF) with half-integer grading @;1/2,+£1,+3/2,.... More generally,
a(Nl,Nz) here will denote an infinite-dimensional algebra with half-integer grading:

GL(N; Ny =&, . ,GLVD(N, N, (69)

whose//2-grade subspaces consist of super-matrices of the following form:
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AM g
GL(n)(Nl,Nz)z[(C(n) D(n)) EGL(Nl,Nz)), (70)
B(n— 1/2) A(n— 1/2) .y
GL(I’]* 1/2)(N1,N2):[(D(n_ 1/2) C(n_ 1/2)) EGL(Nl,Nz)]. (71)

Note from Eq.(65) that for /=2n

M 2n-1
M&{‘):F;l 320 (=)L 18D DY L* (W) =(L?) _, (72)

whereas for’=2n—1 Eq. (66) implies

M 2n-2
MEGP=2 2 (Z1 DL 2 @) DHLY (F) = (L2 - Xon-1 (79

with X,,_4 the same as in Ed26).
Now, we define the following infinite set of bosonic and fermionic flows, respectively:

SPL=[MYP, L1, SPL={mEP ). (74)
One can show, using the superspace identids, that the flows(74) are well-defined, namely,

that they preserve the specific constrained form of the superspace Lax op2dxtorovided the
action of these flows on the constitugatljoiny super-eigenfunctions is given by

M
5&(’2@%:/\/1%/2)(@0_;1 Ai(j//z)ﬁ/(q)j)’ (75)
M
82w = — (M) (W + S, (~) MAY DL (w)), (76)
i1
M
SPB = MY DD+ S J—"i(,-//z)ﬁ/(‘bj)l (77)
=1
M
S = = (MER) ()= 2 (- )TIIEEL (). 78

Furthermore, employing again identiti€31), we find

/12 /2 /2 /12 /12 /2)1 /+m)/2
§(A1)ME4"; )_5(Am2 )./\/IE41 )_[ME41 )’ M&\n; )]_MEE“l'“‘Tz)] ), (79

for /=even
~ MM for /=odd

((/+m)/2)
A, F]

554//2)./\/1 ggn/2)_ 5(fm/2)M 54//2)_ [M 54//2) .M (}r_’nIZ)] — (80)

/I / / /I /I /
5‘(7:12)/\/{‘(7_[_’(212)_{_ 6‘(7_[22)./\/1‘(;:12)_{./\/1‘(7:12) , M(fp;Z)}
i/\/lgf/;ﬁﬁlz) for (/,m)=(odd,odd/(even,even

= 81
iMfﬁf’/;}glz) for (/,m)=(odd,evel(even,odd, 61

which implies the following infinite-dimensional algebra of flows:
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/12 /12) /+m)/2
(6, )= o

1 Al

(547, SP)= 5 5M for /=even, [54", 5= 5 M for /=odd,

{5&{1/2), 5(]?2"2)}: + 6§%f]?2‘)}’2) for (/,m)=(odd,odd/(even,even

(82
{6({1’2) , 6(}*2"2)}= + 5%‘;1’*}*2‘}’2) for (/,m)=(odd,evel (even,oddl.

Recall that4 /2, A {72 and 712, 7{}?) are constant graded matrices of the fa6#) and (68).
From (72) and (73) we find that

4 _
o =— i o ¥=—-pD, (83

are (up to an overall minus signthe superspace isospectral flows of the corresponding
SKP(R;MB M) hierarchy, where the fermionic isospectral flolvs carry the relevant modification
[see Eqgs(25—(26)] found in Ref. 14 in order to preserve the specific constrained for(24)f
Relations (79)—(82) show that the algebra of symmetry flowm&4) for fermionic
SKPRrmg.mp) hierarchy (24) (with R=2r+1, M=Mg+Mg=2N+1), which contains also
Manin—Radul isospectral flows according(88), spans (/G\(_M s,Mg)) . —the positive grade part
of superloop superalgebﬁ\w g,Mg) with half-integer gradind69)—(71).
It is also instructive to rewrite the definitiori65) and (66) and the flow equation&75)-(78)
using the short-hand notatios4) for the pertineni{adjoin) super-eigenfuntions:

M /=1
)— 2 -A|(J//2) EO (_ 1)5(|j|+/)q)](/—l—s)/2p —qui(S/Z)' (84)
= S=
/=1
(//2) 2 ]_-(//2) 20 (_1)5(\j\+/)(1)1(/7175)/2D71\I,i(s/2), (85)
i,j=1
554//2)(Di(m/2)_ (//2)((D(m/2)) 2 A(//Z)q>((/+m)/2) (86)
M
Sy (mA = _ (0 54//2))*(\I,i(m/2))+j21 (_1)/(“'|+m—1)AJ(i//2)q,J((/+m)/2), 87
M
5(}{/2)Cbl(m/2):M (}{/2)(q)l(m/2)) + ( _ 1)m_1_21 fI(J//2)q)l((/+ m)/2) , (88)
j=
M

5(}{/2)\I,i(m/2): _ (M (}{/2))* (\I,i(m/Z)) _jgl (_ 1)(/+l)(|j|+mf l)fj(i//Z)\I,J((/-%— m)/2) ) (89)

Then, the construction of positive-grade superloop superalgebra symmetries of this section can be
straightforwardly carried over to the case of the general unconstrained MR-SKP hieférchy

the latter case all pertinetadjoind super-eigenfunctiongd; 2, w2/ =012 are arbitrary, i.e.,

not related to a finite subset of them unlik®4) and, moreover, their respectlve numbétg ¢
(M=Mg+M¢g) are also arbitrary. Therefore, the general unconstrained MR-SKP hierarchy pos-

sesses (G(Mg,Mg)) . superloop superalgebra symmetries oy Mg .
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Concluding this section, let us also write down tﬁ%’z) flow equations for theadjoint
super-eigenfunction&3) entering the inverse powers gf which result from consistency of the
flow actions(74) with the specific constrained form af ¥ (51):

LR ™A= M D™, LBy MA= — (M {D)* (y{m™D). (90)

VI. SUPERLOOP SUPERALGEBRA SYMMETRIES OF CONSTRAINED SKP
HIERARCHIES: THE CASE OF BOSONIC SUPER-LAX OPERATORS

Now we will extend the construction of superloop superalgebra additional symmetries from
the previous section to the case of bosonic super-Lax operétets (33).
We find for the counterparts @¢65) and (66) the following expressions:

n—-1
M= 2 Asa X L @) DL (V)
a,a'= k=0
F n—-1
+ 2 D LT @)D LY (W), (91)
b,b'=1 k=0
Mg Mg n-2
M‘(}ljf 1/2) _ aZl B(nf 1/2)2:0 Ln7I72(cDb)szl(Ll)*(\I,a)
Mg Mg
+ a; C(n 1/2)2 Ln k— 1 a)D_l(Lk)*(\Pb). (92)

Here A(™M andF ("~ 2) are constant supermatrices which are purely bosonic and purely fermionic

elements belonging to the superloop superalgéb®lg,Mg) (69—(71) with gradesn and n
— 1/2, respectively:

AM 0 0 g(n-112)

A(“)z( 0 D(“>>’ f(nllz):(c(n 12) 0 (93

[compare expression®3) for bosonic super-Lax operators with expressi¢6® and (68) for
fermionic super-Lax operatofs
In particular, we note that

N
M =2 2 (L @D HLH (W) + L0 (g DHLY* (W)= (LY.
(94)

=

In full analogy with Eqs(74)—(78) we construct the following infinite set of bosonic and fermi-
onic flows acting on the bosonic constrained SKP Lax operétet.:

SOL=[MD, L], s VIL=[mO-1D ], (95)

Consistency of the flow action®5) with the specific constrained form d@f=L (33) implies the
following flow actions on the associatéddjoiny super-eigenfunctions:

Mg
oo, M<”><<I>>—2 AL (@ar), W= —(MEQ)* (Fo)+ 2 DY (Vo).

aa’
a'=1
(96)
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Mg Mg
SND=MD(Dy)— X DDL(Dy), PV =—(MD)* (P + > AD (LM (P,),

b'=1 a'=1

97)
5(n— 1/2)(1) M(n— 1/2)(q) )+ 2 B(n— 1/2)Ln—1(21‘)b,)’ (99
b'=1
5(n— 1/2)q, _ (M(n— 1/2) V(W) — 2 B( 1/2)(|_n—1)*({1‘,a,)' (99)
Mg
S 12, = M1 H)— D CE,';T ) n(g,,), (100
a'=1
SV = — (M P VD) E Ci AL * (W), (100)
b'=1

Now, employing identities(31) we find that the symmetry generating super-pseudo-
differential operatorg91) and(92) for bosonic constrained super-KP hierarchies satisfy the same
type of commutation relations as relatidi¥®)—(81) in the case of fermionic constrained super-KP
hierarchies upon replacing there the constant supermatrices of the(6@ynand (68) with the
corresponding constant supermatri¢@s):

N
SPMPD =MD —[MPD, MPT=MT, (102
SPM 1D S DA DM D M= pm (O E (103

5&%- 1/2)M 9’_2- 1/2)+ 5922- 1/2)M 91— 1/2)_{M 91— 1/2)’ M (T['r;— 1/2)}:M E‘I’;_‘I’I:T;_;}l) . (104)

Therefore, the pertinent flows() and 6%~ Y2 (95)-(101) span the following infinite-
dimensional superalgebra:

[5(n)' 5(m)] 5(n+m) ’ [552), 55/21— 1/2)]: 5%214—%—21]— 1/2)' {5(n— 1/2) 5(m 1/2)} 5(n41-r22}1)’

(109
which we denote aS/(\G\LB,MFM- Similarly to (82) we find that (/G\l+\,|B,,\,|F)+ is the positive-

grade part of an infinite-dimensional superalgeEr\aMg;,I,,,qF with half-integer grading consisting
of all (Mg,Mg)X(Mg,Mg) graded matrices of the form

—~ , _ _
Gln, N,= EB/EZGL(Nl),sz Ni=Mg, N;=Mg,

(n) (n—1/2)
Nq, N2 0 D(n) ’ N, .N, C(r‘l— 1/2) 0 .

In the present case of bosonic constrained super-KP hierar@8gshe first relation in(83) is
again satisfied, whereas the second rela(&8) holds only for fermionicSKP(R;MB,MF) hierar-

chies.
For later use let us also write down explicitly ta§ and 5%~ /2 [(é\L,\AB,,\AF)+ superloop
superalgebrbflow equations for all pertinenfadjoint) super-eigenfunction&t5s):

(106)
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Mg
SVOM= M D (@M~ > AD O™,

aa’

a'=1
Mg
SPwN=—(MPy*(w{M)+ X D™, (107
b'=1
Mg
B -MP@M) - 3 DRI,
b'=1
Mg
TP =—(MP* T+ 3 AQTE, (108
b'=1
Mg
5‘(7[_1* 1/2)q)gm):M(}r_17 1/2)((ng))+ E B;T)T l/2)q)E)r:+mfl), (109)
b'=1
Mg
S VAWM= — (MG v()- 3 B, AR, (110
a'=1
Mg
5‘(7-[1* 1/2)q)ém)=MELr_17 1/2)(q)§)m))_ E CEJnaT 1/2)q)gr:+m) , (111)
a'=1
Mg
552— 1/2)\I,gm): —(M (;— 1/2))*(\I,gm))_ E Cg); 1/2)\Pg)+m), (112
b'=1

which generalize Eq$96)—(101) and where relation&t7) have been taken into account. Accord-
ingly, the consistency conditions for the flow E@85) written in terms ofL ~¥ with the specific

super-pseudodifferential form of the lattet3) imply for (41)—(42) the following (/G\LMB,MF)+
superloop superalgebra flow equations:

(~) (~) (~) (~)
SO EM=pD(DE™), sWw ™= (MO (w ™), (113

(~) (~) (~) (=)
5&_[_1- 1/2)(1) l([.}_m):Mg_ 1/2)( q) (ﬁ—m))’ 5&[_1- l/z)q, %—m): _ (M ‘(7?_ 1/2))*( \I’ (B—m))’ (114)

where again relationg7) have been accounted for.

VIl. MULTI-COMPONENT (MATRIX) SKP HIERARCHIES: SUPERSYMMETRIC
EXTENSION OF DAVEY-STEWARTSON SYSTEM

Let us now consider the following subalgebra of the superloop superalgebra symmetry flows
for bosonicSKP,,.y,ny hierarchiedi.e.,R=2r, Mg=Mg=N; cf. (91)—(92) and(95)] which are
defined as

(k) (k)
s g=—0ldty, 5(”;532)5 -D,, (115

Ex O 0 Ey (k)
(n_ (n—1/2)_ : —di
Ex ( 0 Ek), Ex (Ek 0) with E,=diagO0,...,0,1,0,...,0, (116
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wherek=1,...N. The flows(115 span a direct sum dfl copies of the original Manin—Radul
isospectral flow algebrél2):

(k) (D (k)
{DyDmt=—68qddt ny1m-1, rese0; klI=1,..N, nm=12,.., (117

which justifies their representation in a form similar(i®):

(k) kK = (K (k)
D=0, 2, 09t prey. (118
s=1

Now, we can construct the following supersymmetric extended integrable hierarchy built on the
original bosonicSKP,,.y vy supersymmetric hierarch{33) by supplementing the latter with the

set of additional superloop superalgebra supersymmetric Manin—Radul-type (1a®s-(118)

[recall hereL=L5.n,ny (33)]:

(k) (k)
dlot L=—[MM L], DL=—[MP ¥ L] (119

with

n—-1
M&“zgo[L“*S*l@k)Dfl(L%*(«lwL“*H@k)D*l(LS)*(ﬁfk)], (120

n—1 n-2
Mﬁ"‘l’z’zgo L“‘S‘l(cbk)D—l(L%*(*lfk)—520 L' 52D ) D HLY)* (W), (12D)

where the flow action on the constituetadjoing super-eigenfunctions is given Hyf. Egs.
(96)—(10D)]:

(k) (=) (=) (k) (~) (~)
Aot \D=— MDD, ot Wa=(MM*(¥,), a#k, (122

(k) (~) (~) (~) (k) (~) (~) (~)
ot @ =—-MM(DY+LY(DY, It W =(MM* (T )—(L"* (D), (123

(k) (~) (~) (k) (~) (~)
Dn@,=—-M""Y2(D,), D W,=(M ¥)*(W,), a*k, (124)

(k) - (k) -
D@ =—-M{" YD) +L" DY), D Wy=(M DY (W) + (L H* (W),
(125

(k) _ - (k) _ .
D@ =M VDY) +LY (D), D W=(M YH* (P +(LN*(Py). (126

The above construction is the superspace analog of our construction in Refs. 26 and 27, where the
corresponding ordinary bosonic scal@me-componentKP hierarchy, supplemented with the
flows belonging to the Cartan subalgebra of additional loop-algebra symmetries, was identified as
a matrix (multi-component KP hierarchy. Therefore it is natural to call the supersymmetric ex-
tended KP hierarchy defined by Eq$19—(126) N-component constrained supKP hierarchy

It is well-known that ordinary bosonic multi-component KP hierarchies contain various physi-
cally interesting nonlinear systems such as two-dimensional Toda lattice, Davey—Stewartson and
N-wave resonant systems. As a nontrivial illustration of the properties of theNreamponent
constrained super-KP hierarchigsl9)—(126) we will show that theSKP,,., -y model contains a
supersymmetric version of the ordinary Davey—Stewartson system.
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Thus, we consider the special case-2 in Egs.(119—(126). We take for convenience the

following two mutually (anti-)commuting infinite sets of Manin—Radul-type row{s?/atn, n}
1 @
(the original MR-SKP isospectral flowsand {a/at =—-dldt,,D,} [recall d/t, —a/at 1
1) _

+dld t , according to the first Eq(83)]. In particular, we will use the short-hand notatién

_ (1)
=dlot,=—4ald t 1. We will need the following explicit expressioltsf. the general notations and
relations from Sec. )

2
LE£(2;2'2):01+321 ((’i‘)apilq/a‘F ¢aD71@a)EW&W7155+ U1/2D71+ U1D71+‘ .

(127
2 2
Uyp= _3a15a§1 (P Y,—P,V,), u= _Bl_alaalzazl (P, DV, +D,DyV,),
(128
(L), =0%+2uy5D+2uy, (L?)* =92+ 2uy,D+2(Uuy— Dyuyy), (129
MP=d, D" W, +&,D W, (130

MP=L( @)D W, +L(P)D W+ P, D IL* (W) + DD IL* (V). (131

For the first additional symmetry flow we have

(~) (~) ~) (~) (~)

a@l—M“)(cb )—L(®y), a‘lf1=—(M(1))*(\If )+L* (W), (132
3&1:&)1\1,1_@1@1, ;ﬂlzq)lpgqfl'f'(’i)lpgqfl'f' a1($1wl—¢1@1), (133)

where the last two Eq$133) are obtained fromV= M (ll)W upon inserting there the expansion
for W (5). Recall also thaty; and 8, are expressed in terms of the constituétdjoiny super-
eigenfunctions of the super-Lax operatd?7 through Egs.(128). Further, taking the super-

residuum of the superspace operator flow equatior [ M {V,L], we get

yp= = (D= D1 T ). (134
We now consider the following system of flow equations:
g =) (~) g () oy &)
_ch_(L )+(Py), E‘IH:—(L )3 (W), (139

which are the standarthdjoin super-eigenfunction equatiorf20) for the second isospectral
bosonic flowd/ dt, where the super-differential operators on the r.h.s. are givefl2§, and

(~) (~) (~) _ (™ (~) (~)
Alat,®=MP (D) —LAD,y), dldt,¥=—(MP)*(T)+(L)*(Py), (136

which are the flow equations for the second bosonic additional—symmetryaﬂ@@ with M (12)
as in(131). The explicit form of Eqs(135 and(136) reads

<I>1—[c9 +2U4,D+2u4] P,
dt,
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3l 3to®1=[~ P+ 20(D (@1 W1) 1@, 20(D , (D1 ¥1) Dy, (137
0 ~ ~
_¢1:[82+2U1/2D+ 2u1]q)1,
at,
919ty ® 1 =[— P+ 20(D , {(P1W1)]®1—25(D , (B1¥,)) Dy, (138

J
E‘Plz —[%+2uyD+2(u;—Dyuyp) ¥,

(139
0l 9t W1 =[*—20(D ;1 (®,¥ 1)W1+ 24(D , (D, V)W,
Jd ~ 5 ~
E‘P]_:[& +2U9,D+2(u;—Dyuy ) [V,
(140

At W =[P —20(D y {( D, W))W, —20(D,; {( D, W)W,

Introducing a new time variablié=t2—t_2 and subtracting?/at_z—flow equations from the corre-
spondingd/ dt,-flow equations above, we arrive at the following system of super-differential
evolution equations fob,, ®,, ¥, ¥V, regarded as functions ofT(x=t;,y=t,,0) [i.e.,
functions on superspadl%2|1 with coordinates X,y, #)] and suppressing the dependence on the
rest of the bosonic and ferminionic flow parameters:

O+ FD,, (141)

d 1 — -~ ~
ﬁ¢)1:|:§((92+ &2)+u1/2D+(Q+ 2(‘D1D0qfl+ q)lpgllrl))

O+ Fd,, (142

~ 1 _ - ~ ~
@1:[5(02"‘ a2)+U1/2D+(g+ 2((1312)9\1'1"‘ CDJ_DQ\I,]_))

' B ) o . 3
— ¥, =— E(32+ %)+ UyD+ (G— Doy o+ 2(D DV + D DV )) | W — FW¥
) ' (143

' B o o
— Y, =— E(az+ 3%)+ Uy D+ (G— DUy ot 2(D DWW 1+ D DV )) | W+ Fy.
) ' (144

The coefficient super-functions,, F,7,G,G in Egs.(141)—(144) are related withb &)1, v,
¥, through nondynamical super-differential relations as follows:

5”1/2:_(9(&)1‘1'1_‘1’1‘1’1): DyF=d(®, V), Dei'—:;(a’lq’l)y (145
939G+ (9+ ) AP, DyV + D, DV,)
:25’(“1/2(&)1\1’1_¢1‘1’1))+32((51D0q’1+q’1pa®1)a (1406

Dy(G-0)= (D, W, — D)), (147)

The first relation in(145 coincides with Eq.(134). Relations(146) and (147) result from the
definitions ofG andG:
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G=U,— (D, {( PV )~ 2(D Dy, + D D,W ), (148

C=Uy— (D ;Y (D1 W1))—2(DD,W, + DDV ), (149

with u; as in(8) and(128), upon taking into account Eq&133).

The system of evolution Eq$141)—(144) together with the nondynamical relatiofs45)—
(147) is the supersymetric extension of the ordinary bosonic Davey—Stewartson system. Indeed,
let us take the bosonic limit ifl41)—(147), meaning that we set all fermionic component fields in
the pertinent superfields equal to zero and in addition we put the fermionic superspace coordinate
#=0. Then, the only surviving functions are

b1=®1ly0, 1=Dg¥1l4—0, G=Glyp—0=0ls0. (150
and the superspace systdit1)—(147) reduces to the ordinary bosonic system of nonlinear
equations:

J 1 2.
0—,_-|—¢>1: E(a +9°)+G+2¢1¢1 | b1, (159

J 1 > =
= | 5P+ P+ G+ 24| U, (152
909G+ (9+0)* (1) =0, (153

which is precisely the standard Davey—Stewartson system.

VIIl. “NEGATIVE"-GRADE SUPERLOOP SUPERALGEBRA SYMMETRIES

A. “Negative”-grade symmetries of bosonic SKP(rimg . Mp) hierarchies

Using the same technique as in Secs. V and VI, we can construct a “negative”-grade super-
loop superalgebra of additional symmetries for constrained super-KP hierat@hjesirst we
will consider explicitly the case 08KPr;u, m,) hierarchies with bosonic super-Lax operators
(33.

Following the pattern in Eqs(91) and (92) we consider the following set of additional
symmetry generating super-pseudo-differential operators

N+r n
./\/l%n)zabz:1 ;1 [Kggn)q)gf(nfwl))p—1\"1:,273)_’_ngn)&)gf(nfs+l))p71\1,;75)], (154)
N+r n
M%n+ 1/2):ab2:1 521 [ngn-# 1/2)(I)§)—(n—s+ 1))’D_1qu_s)_§ggn+ 1/2)(D§)—(n—s))p—1\1,g—s)]'
(155
and their associated supersymmetric flows,
5(:‘—n)L=[M%—n),L], 6(E—n+ 1/2)L=[M(;._n+ 1/2),L], (156)

where the short-hand notatiofsl) and(42) have been employed. Hes ~™ andF(~"~ Y2 are

constant supermatrices—elements of superloop superaléﬁpra}N+r [cf. (106)] having a form
similar to (993):
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ACM 0
0 DM

0 E(—n+ 1/2)
A= Fln+ 12)—

6(— n+ 1/2) 0 ! (157)

where now all matrix blocksA(™™ BT 12 c(=n+12) b(=M zre of size N+r)X(N+r).
Furthermore, A" #1 in Egs. (154 and (156) since M (j:"])=L*” [cf. Eq. (43)], so thaté(ff:n])
does not generate any flow according to the first @§6). Recall also, that according td9) all
super-functions entering the super-pseudo-differential opergtbds and(155 are agair(adjoing
super-eigenfunctions of the bosorg& PRiMg Mp) hierarchy(33).

Consistency of the flows actidi56) with the constrained forni33) of L and its inversg40)
[or (43)] requires that the “negative-grade” flows act on the pertinéatjoint super-
eigenfunctions as follows:

(—n)(N)(m) (=n) (N)(m) (—n)(w)(m) (=n)\ (N)(m)
SV M=Mm V(e ™), s VW M=—(MmT)R (v ), (158
(12 iy e Dy 1) (-n+ 12) 4 g (m)
s (OB =Mz ("), ops AN =—-(M5 (P yY), (159
(*n)(w)(—m) (=n) (N)(—m) - A(—n) N)(—n—m)
5; (Da :MVX ((I)a )_bZlAab (Db y
(160
(*n)h)(—m) (=n) (N)(—m) - _(7n)(w)(fn7m)
WM == MNP+ X DED W,
(*n)(N)(—m) (=n) (N)(—m) ~ _(7n)(w)(fnfm)
s olM=MTV (0 )—b§:‘,lDab o ,
(161
(*n)(w)(—m) =)\ % (N)(fm) . Al(—n) N)(—n—m)
8w M=— (M) (W )+b§1Aba v :
N+r
5%n+ 1/2)(Dg_m)=./\/l(;n+ 1/2)(q’§_m))+b21 gg)m 1/2)(I)é_n_m+1), (162)
N+r
—n+1/2) - (— —n+ 1/2 . . ~ (-
5%[1 ),\l,g TTI):_(MF;” ))*(\I,g m))_bzl ggan-f- 1/2)\1,{) n m+1)’ (163)
N+r
—n+ 1/2)% (- —n+1/2), % (- —(- e
N+
(-n+ U2)5,(-m) _ (Nt 12) 4 F,(—m) r ~(—n+ 12u(—n—m)
85 VM= — (M3 )* (W )—bgl ct, NS . (165)
Following the same steps as in the derivation(#3)—(82) and (105 we obtain
CMaem_ m oy (on) (Gl Emq_ 4y (znzm)
5«41 /\/lA2 5/\2 /\/lA1 [/\/lA1 ,/\/lA2 ]_M[Al«flz]’ (166

(=n) (=m+12) (—m+12), (=n) (=n) (=m+ 1/2); (=n—m+ 1/2)
& M S5 MM T M 1=M 37 ., (167
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(-n+12), (-m+12) | (-m+12), (—n+12) ., (-n+12) (=m+ 12, (=n-m+1)
5 M]:z +5f2 Mj:l {M]:l M= }_M{Flfz}
(168

In the present case, as explained above, the supermakﬂ&észl are subject to the condition

AW =1, AM+1. Relations(166—(168) imply, in complete analogy witt105), that the corre-
sponding infinite-dimensional algebra of the “negative-grade” fl¢its4)—(156),

(=) (=m)q_ (=n-m) (1) (-mE V2 (—n-m+ 1)
(60" 0 =0 e 180765 =635 ,

SCNH1D) mi L2y ((-n-mi) (169
t 7 F b= {77

is the superloop superalgebréT(,’wr’NH)_—the negative-grade part éT_,’\H,'NH [cf. (106)],
where the prime indicates factoring out of the unit matrix in any integer-grade subspace, i.e.
AW 21, whereasF ™" 12 is arbitrary.

From relations(158 and (159 and (113 and (114) it is straighforward to check that in
bosonic constrainedSKP(R;MB,MF) supersymmetric hierarchieq33) the positive-grade
(GLu, )+ [Egs. (109 with (91-(95)] and negative-gradeQL{,, . ,)- [Eds. (169 with
(154)-(156)] superloop superalgebra additional symmet(a#i-)commuteamong themselves.

B. “Negative’-grade symmetries of fermionic SKP(r;m, mp hierarchies

Now we turn to the construction of “negative-grade” superloop superalgebra additional sym-
metries forSKP(R;MB Mp) hierarchies with fermionic super-Lax operatd@4) (where R=2r
+1, M=Mg+Mg=2N+1). Employing short-hand notatio83) we introduce the infinite set of
super-pseudo-differential operators:

2(N+r+1) /=1
—/12 - —(/-s— —1,(-
M= 3 A (- gl e Ap s 170
2(N+r+1) /-1
—/12 - —(/—s— 1 (-
Mi; ) |321 ﬁu //2)2o (_1)3(/+\J\)¢S (/=s=1)i2)p 1l/,|( s/2)' (172
W= =

defining the supersymmetric flows
(=/12) o (=/12) (=/12) o (=/12)
o L=[MG L], 67 TLE[ME L] (172

Here A Al andﬁ_//z) are constant graded matrices belonginﬁ)(N+r+ IN+r+1) [cf.
(69)-(71)]. Furthermore,A( MW#1in Eqs(170 and (172 smce/\/l( n) =L 2" [cf. Eq.(32)], so

that the flow5( |dent|cally vanishes according to the first EEﬁ]?Z) Recall also, that according

to (57), all super functions entering the super-pseudo-differential operé&t@@ and (171) are
again(adjoint super elgenfuncnons of fermionBK P Mg .Mp) hierachieg24).

Consistency o5, 2) flow action (172 with the constramed form df (24) implies
/12 /12 ~/12 _
& % )cp =M ZP @), 8 W= — (M ED)E w, (173
or, more generally using short-hand notati@s3),

5( //Z)q)(m/z) M( //2)((b(m/2)) 5%7./-/2)\Pi(m/2):_(M(_/IZ))i}(\Pi(m/Z))' (174)
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. £/ 12) . . . 1

On the other hand, consstency&&; -flow action(172) with the constrained form of ~* and,

more generally, ofZ ¥ (51) yields

2(N+r+1)
5(:\—//2)¢|(—m/2):M(:1—//2)( I(—m/Z))_ Z ZI(J—//z)(ﬁS—(mw)/z), (175
2(N+r+1)
—/12) (- /12 _ —_ _
5% )lﬂf m/z):_(/\/lfZ ))*(%( m))+ 2 (_1)/(|J|+m)ASI//2)¢S (m+/)/2),
(176)
2(N+r+1)
—/12) (- —/12), (- _ _
5% )¢|( m/z):M(; )(¢|( m/2))+(_1)m 321 f?u //2)¢S (m+/)/2)’ (177
2(N+r+1)
/1) (- ~/12 - _ _
5% )z//,( m/2):_(M(; ))*(‘/’l( m/2))_ 2 (_1)(/+1)(|J|+m)ﬂl//z)¢5 (m+/)12)
(178
Using (175-(178 and repeating the steps in the derivation(4)-(82) we find
(=/12) , (=m2)  (-m2), (=/12) (=/12) (=M (= (/+m)/2)
6A1 MA2 5A2 M-Al [/\/IA1 ,MA2 ]_M[AlvAZ] , (179
(=712)  (=m2)  (-m2), (=/12) (=712) (—m/2)
s M Sz UMY (M Mz
M&(}’—/fm)/z) for /=even
=1y crmi) _ (180
M{A’f} for /=odd
(=/12) (=m2) | (—m2), (=/12) (=/12) (=m/2)
5f1 Mfz +5f2 MJT1 {Mﬁ ,/\/lf2 }
+ E%l(%r)/z) for (/,m)=(odd,odd/(even,even
= v (181)
= MEZ? for (#/,m)=(odd.even(even,odd,

which has the same form &%9)—(81), but now 4, Zl,g, F ]71,2 are graded matrices of bigger

size belonging toGL(N+r+1N+r+1). Relations(179-(181) imply the following infinite-
dimensional algebra of flowf. (82)]:

(=712) (—m/2); __ (= (7+m)/2)
(04, 04, 150 a4y -

[5%”2) , 5% W= SR gor s—even, [8472, 58 ™= - S T™ for /=odd,

[A,7]
(182

(/1) (=mi2)y _ , (=(/+m)2) )y —
{57”1 ,5]?2 }_i(s{ﬂfz} for (/,m)=(odd,odd/(even,even

(/1) (=m2)y (= (ZFm)f2) /) —
{6f1 ,55 t== 5[f1’f2] for (~,m)=(odd,eveiV(even,ody,
which is isomorphic to é\L’(N+r+1,N+r+1))_. The latter is the negative-grade part of
GL(N+r+1N+r+1) [cf. (69)-(71)], where the prime indicates factoring adt~™ =1 in each
integer-grade subspageecall that the flowﬁ%;”f (172 vanish identically.

Finally, using(90) and (174—(178), we get
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52 Sz—m/Z)_ 5im/2)M (R A2 M %‘m’z)] =0, (183
Py %m/Z)_ 5%2 ™2 AL ([ (D M (; "2 =0, (184)
5DME (=m2)_ < M2 M LD [ M ) ME Cm2— o, (185
PCyY %m/Z)_’_ 5%—2 m2) \ 4 (12 YD pg (;m’z)} =0. (186)

Relations(183—(186) imply that in fermionic constraine8 KPg;v v,y supersymmetric hierar-
chies(24) positive-grade ((/ET_(MB,M r))+ symmetry flows(anti-)commute with negative-grade
(GL(N+r+1N+r+1))_ symmetry flows(recal M=Mg+Mg=2N+1):

(80,65 ™ 1=0, [6{7,55:771=0, {8¥? 67 "")=0. (187
C. Full superloop superalgebra additional symmetries

Collecting the results from Secs. V and VI and the present section we conclude the following.
(i) Fermionic constraine&KPr:v m.) supersymmetric hierarchi¢24) (whereR=2r+1,

M=Mg+Mg=2N+1) possess the following superloop superalgebra symmetries:
(GL(Mg,Mp)) . ®(GL' (N+r+1N+r+1))_. (188

(i) Bosonic constraineKPrm, m.) supersymmetric hierarchig83) (whereR=2r, M
=Mg+ Mg=2N) possess the following superloop superalgebra symmetries:

(GLmg,mp) + @ (GLygrnr) - - (189

IX. VIRASORO SYMMETRIES OF CONSTRAINED SKP HIERARCHIES

The action of the operatofsmultiplication by A and  as well asd/dn andd/dn on the “free”
BA super-functionz,//(Bo,{ (15 and(16) can be expressed as the action of the following superspace
operatorgcf. Ref. 2:

d
NUER=0UER, S R=TodEd,  myE=—(Q+T10)yg}, ¢f<°>— YR, (190

whereQ= d/d0 — 64 is the standard super-charge operator and

o

Fo—E Ity 1+E (n——)a " ZD——E O 2Q+1 > (=162,
nil=1
(191

(9 oo
Li=0+2, 0,0" Y Q+I9=—+> 6, (192
n=1 d0 =1

Dressing arbitrary products of powers of the above “free” superspace operators by means of Sato
superspace dressing operatr(5),
M/ ma=V5d TTQ+T10)"W ™), (193

defines via Eqs(58) an infinite set of bosonic and fermionic symmetry flows for the general
unconstrained MR-SKP hierarclf§) which span the supersymmetric versionf ., .. algebra'-?
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For the class of reduce8KPr u, v, hierarchieg24), however, the flows constructed k%93

do notdefine symmetries since they do not preserve the constrained form of the pertinent super-
Lax operators. This is a superspace analog of the problem with the usual Orlov—Schulman
operators? which do not yield symmetries in the case of constrained KP hierarchies in the purely

bosonic case. In the present section we will follow our approach from Ref. 21 where the latter
problem has been solved via appropriate modification of the standard additional-symmetry gen-
erating Orlov—Schulman operators.

In fact, we will construct here the Virasoro additional symmetries for bosonic constrained
SKPR®Mg M) hierarchies(33). This same construction based on the super-pseudo-differential
formalism does not, however, carry over to the case of the fermionic part of the full super-Virasoro
and the rest of supai, . ., symmetries, as well to the case (@lperVirasoro and supew, . ..
symmetries for fermionic constrain&®K Pg;v, v, hierarchies24).

Similarly to the purely bosonic cadkthe action of Virasoro flows on super-Lax and super-
dressing operators are given ﬂ}enceforthLE,C(m;MB,MF) and we employ notations from Sec.

VI above
(0) (0)
SIL=[—(WMW H_+X, L], SIW=(—(WMW YH_+x)W, (194
or, equivalently,
(0)
SIL=[(WMW 1), +A,,L]+L", (199

wheresY=—L,_, (in terms of standard Virasoro notationsiere

(0)
M =Tod"+ = rl(Q+Fla)a” 1 (196)

are the “bare”(undressedVirasoro operators and the additional operat¥fsare to be chosen in
such a way that the flowl94) define a symmetry, i.e., they must preserve the constrained form
of L=L, \ (33).

For non-negative Virasoro flowfs=0 in (194)] we find the following expression fot,:

=)

where the short-hand notatiot¥5) are used. Consistency (f94) with the constrained form df
(33) and its inverse power@?7) dictates the specific form of the action @}f—flows (forn=0) on
the pertineniadjoint super-eigenfunctiongt5) and(41) and(42), which reads accordingly

Mg
2 q)(n S\D~ 1\1,(5)_1_2 (I)(ﬂ s\~ 1‘1’(5)

X,= 2 (197

(~) (0) (~) n (~)
SYD M= (WMWY, +X,](D M)+ E+m—1) @ (M- (198

(~) (0)
SYW M= —[ (WM W™ 1)*+X"](\I’(m))+

+m 1) p (ntme1) (199

(~) (~)
5V (m)—[(WMW Do+ (@™ —(m=—1) @MY for m=n, (200

(0)
qu>< ™ =[(WM W~ 1)++X](<D( ™) for m=n-1, (207)

(~) (0) (~) (~)
SYW M= —[(WMW HE+ X5 (P ™) —(m—1) ¥, ™ ") for m=n, (202
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(~) (0) (~)
YW M= —[(WMW H +X5 (P {™)  for m=n-—1, (203)

where relationg47) are taken into account.
For negative Virasoro flowgn<0 in (194)] we obtain[employing again notationg1) and

(42)]

n . ~ . ~ ) )
u_J) q)g(\n|*l+l)fD*1\pE(l+1)+ (Dg(|n\*l+1)pflq;g(ﬁl)]_ (204)

X = 2 E

N+r |n| (

Consistency 0f194) (for n<0) with the constrained form df (33) and its inverse power&l3)
implies that the flowsﬁ\fw act on the constituerfadjoiny super-eigenfunction@5) and(41) and
(42) as follows[taking into account47)]:

(~) (0) (~) (~)
& @ V=[(WM_gW 1+ XD M)+ (m=1) & MY for m=|n|+2,
(2095

(=) (0) (=)
81 @ MV=[(WM_gW ™+ X l(@ (™) for m=<|n|+1, (206)

(~) (0) (=) (=)
S W= —[WM_ W Hr+ X (@ M) +(m=-1) W "D for m=|n|+2,
(207

(~) (0) (~)
Sy W M= —[(WM_yW ™ HE+ A5 ) 1(@ ™) for m<|n|+1, (208

(0)

(=) Il
6\1|n|q)53 ™= =[(WM_ In W~ )++X( InI)] (I)( m)) > m)CDf) (m+\n|+1)), (209

)

(~) B © B | |
3 W, " [ova WV DT+ X ) qu m)—

(~)
m) p (el 210

The consistency of the negative flow definitidd94) (or (195)) with n<0, whereX_ |, is as in
Eq. (204), crucially depends on relatiorig7). Also, in the process of derivation ¢197)—(210)
essential use is made of the super-pseudo-differential operator ide(Ritjes

What is left is to check that the flond94) indeed satisfy the commutation relations of the
standard Virasoro algebra. To this end let us consider the commutator of the Virasorasfiows
=—L,_,and 5}{1: —Ln—1 (with L, being the standard notations for the basis of Virasoro alge-
bra) acting on the bosonic super-Lax operatorfwhere (,m) are arbitrary non-negative or
negative indicewhich yields

(0) (0) (0)
(= (WMWY _+ X)) — 80— (WMWY _+ X)) —[- (WMWY _+ A,

(0)
— WMWY _+ X (211
Using the identity

(0) (0)
SY WMWY _ = 88 (WMWY _

0 ) 0)
=—(n—MWMpsm W —[OWMWV Y (WMW ) ]

(0) (0)
+[ Xy WM W = [ X WM W ] (212
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the r.h.s. of Eq(211) can be rewritten in the form

(0) (0)
(N=M)(WMpym 1t W™+ Sy Xy = [OVMWV Y Xl = sy
(0)
+[(WMmW_1)+aXn]f_[Xn-Xm]- (213)

Now, employing again the super-pseudo-differential identitgi3, we find, taking into account
(198—(203 and(205—-(210), that the sum of all terms (213 involving & , yield

(0) (0)
A= [OWVMW ™) Xl = op X+ [OWMW ™) 4 X — [ X, X
=—(N—-MX 1 m-1- (214

Thus, we verify the closure of the full Virasoro algebra of additional symmetries without central
extension:

[6F,60]=—(N—M) &), 1. (215

X. SUPERSPACE DARBOUX-Ba CKLUND TRANSFORMATIONS AND WRONSKIAN-
TYPE SUPER-DETERMINANT SOLUTIONS

A. Darboux—Ba’cklund transformations for constrained super-KP hierarchies

In what follows we shall consider Darboux-&dund (DB) transformations for the whole
classSKPr m, v, Of constrainedreduced supersymmetric KP integrable hierarchied). For

definiteness we shall explicitly discuss the cas& KTP(R;MB Mp) hierarchies defined by fermionic

super-Lax operators. DB and adjoint-DB transformed objects will be indicated by tilde and hat,
respectively, on top of the corresponding symbol.

In analogy with the ordinary “bosonic” case, DB transformations within the Sato super-
pseudo-differential operator approach are defined as “gauge” transformations of special kind on
the pertinent super-Lax operator of the supersymmetric integrable hierarchy:

L—L=TyLT,", Ty=¢Do ?, (216)

with ¢ being a bosonic superfunction, which obey the following requirements.
(A) Super-DB transformation®16) have to preserve the specific constrained fo24) of £

[or (33) for bosonicSKP(R;MB,MF) hierarchie$ i.e., the transformed super-Lax operatb(216)
must be again of the form
R—-1 M
ZEZ(R;MB‘MF):IDR‘FE ’5]/2D1+E q)iD_l\I’i, M:MB+MF1 (217)
j=0 i=1

wherel'\“/IB’F are the numbers of DB-transformed bosonic/fermidaitjoint super-eigenfunctions
®,, ;. Let us stress that we require the total numbkiof negative super-pseudo-differential

terms inZ to be the same as in the initial super-Lax operatd®24). Let us also note that, using
the superspace pseudo-differential operator identitiés), the DB-transformed fermionic
SKPRr-M. M.y Super-Lax operatof216) acquires the form

(RiMg.Mg)

M
Z=<Z>++<T¢£<¢>)D*1¢*l+i=21 (=D T (@)D T, H* (). (218

Therefore, one of thé1+ 1 negative super-pseudo-differential terms on the r.h.258) has to
vanish.
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(B) Super-DB transformation€16) have to preserve the bosoni@0) and fermionic(25)
isospectral evolution equatioris the case of fermioniSKP(R;MB,MF) hierarchieg or Eqgs.(34)

(for bosonicSKPr-w. M.y hierarchies As we will see below, the fermionic isospectral flows
(RiMg M)

(25) can be strictly preserved under super-DB transformations only for the sulS#aRg.; ¢y of
constrained super-KP hierarchi8& P(R;MB'MF)' In the more general case we will require pres-

ervation of fermionic isospectral flows under super-DB transformations up to an overall sign
change.
Similarly, we can define adjoint-DB transformations:

L—L=(~T,V*LT,, T,=¢yDy %, (219

obeying the same requiremerits) and (B). In this case the counterpart of E@18) now reads
M

L=(L) s+ D HT L () + 2, (—~D)I(=T,H* (@)D 1T(W)). (220
i=1

As in (218), one of theM + 1 negative super-pseudo-differential terms on the r.h.2f) has to
vanish.

Comparing(218 with (217) [and similarly for the adjoint-DB transformatiorf20)], and
taking into account relation&5) (for fermionic super-Lax operatorsr (46) (for bosonic super-
Lax operatorg we find that conditior{A) above can be satisfied for two different choices of the
(adjoint)DB generating superfunctions and ¢ :

(i) First choice:¢=®; where®; is some fixedoosonicsuper-eigenfunction entering the
negative pseudo-differential part of the original super-Lax oper@4 In this case we obtain

O =TL($), Vi =t $=0;, (221)

=T, (D), T=(—1)(T,H*(¥), i#io. (222

Similarly, the first choice for adjoint-DB transformations ds:\PiO where \Ifio is some fixed

bosonicadjoint super-eigenfunction entering the negative pseudo-differential part of the original
super-Lax operator(24). Accordingly, for the adjoint-DB transformedadjoiny super-
eigenfunctions we have

O ==yt W =-TLE(Y), Y=V, (223

i
O=(—DIT,H* (@), Vi=—T,(¥), i#i,. (224

Let us note that the Grassmann parity of the DB transforiaeljbing super-eigenfunctioni)i
andW¥; (222 for i#i, changes fronji| to |i|+ 1, and similarly for the adjoint-DB transformed
ones(224).

(i) Second choiced =Ly 1A¢,,) (for super-DB transformationsind = ¢, (for adjoint
super-DB transformationsvherelL 1,Z(Zﬁ%) and h, are some fixed bosoni@djoin) super-

eigenfunctiong52) and (53) entering the expressiaib0) for the inverse power of the super-Lax
operatorL. Since according t¢55) the defined above and s obey the relation€(¢)=0 and
L*()=0, we get for the(adjoiny DB-transformed(adjoiny super-eigenfunctions if218 and
(220

i=Ty(®), Wi=(~DIT,H*(W), =Lns 1dPay), (225
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0=~ DT, H* (@), Wi=-TyW), ¥=4,, (226

foralli=1,... M.

For later use let us write down tiadjoint super-DB transfomations for the whole series of
(adjoind super-eigenfunction&4) and(53) entering in the definition of additional non-isospectral
symmetry flow generating operatai®5), (66), (74) and (170)—(172):

(a) For the first choice i) of DB-generating(adjoiny eigenfunctiongcf. (221)—(224)] we
have

&)i(g,/2):/f¢(q)i((()/+l)/2)), {i}i(d/IZ):(_1)/_1(7—;1)*(\1,5(()/_1)/2)) for n=2, (227)

g _1_1
io_g=q)_i0’
(228
D P=Ty (@), WA= (=T, (W) for i,
=Ty (), YT (), (229
b= t=e S GUD— (@ D) for =1 (230
io v \Ifio' o ¥ io T
(ADi(//Z):_(T;l)*((I)i(//Z)), \IA,i(//Z):_Tw(\I,i(//Z))l’ i#io, (231)
G D= (T, (el D) Y= =Ty 7). (232

(b) For the second choidgé ) of DB-generatingadjoint) eigenfunctiongcf. (225 and(226)]
we obtain

ag !

O P=Ty (@), W P=(—D)IT,H* (W), p=Ly, 1Ba) =8, (233

¢)( //2)_T(¢( (/+1)/2)) w( //2)_(T ) (i//( (G l)/2)) for /21, 77‘0(02)):%55(-65’

“o
(239
B P=Ty(a ) Y= DT D) for 140, (239
q")i(/IZ):(_l)|i|(7—;l)*(q)i(//2)), \i,i(/IZ):_Tw(q,i(/IZ)), w ’pao l//(O) (236)

71.(0) 1_ 1 (—=/12)_ —(/=1)/2
Vo=~ 3=~ Z(—j ¢ —(T,H* (o, ) for /=1, (237)
lﬂ( //2)__7(\1,( (/+1)/2))

(239

(,2)|(_//2):(_1)“'(7—;1)*((1)21_//2))1 Al(—//Z)Z_Tw(wl(—/Q)) for |$éa0.
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Let us now study the fulfillment of conditio(B) above by thgadjoin) DB transformations
(221) and (222, and (223 and (224). It is straightforward to check, using the super-pseudo-
differential identities(31), that the latter preserve the bosonic isospectral flow E3f3:

J ~ 1% ~ ~
T L= g T Ty L) T, E =L 1 L] (239

for fermionic super-Lax operators, and similarly for bosonic super-Lax operdimsEq. (34)].
Next, we compute the action of the fermionic isospectral fldwn the DB-transformed bosonic

super-Lax operatoE=T¢LT;1 (216 taking into account the second E@4) and using the
identities(31) to obtain

DL =[Dn7, 7, Ty (L2 V) 7,1 D)= [TV, T, (240

Comparing(240) with second Eq(34) we note thaD,, fermionic flows for bosoniSKPgr:v m,)

hierarchies are preserved undadjoint) DB transformations up to an overall sign.
Let us now discuss the case of fermioSKP(R;MB,MF) hierarchies. The action of the modi-

fied fermionic isospectral flow®,, (25 on the DB-transformed fermionic super-Lax operators
(216 reads

DoL={DTyT , + Ty( L = Xn-1) T, L}, (241)
where, using the identitie81), we have

DTy T3 + Ty (L2 = Xon-1) T, =Ty(Dnp+ (L2 =Xpn_1)(¢))D 171
M 2n-2

+Zl ZO (_1)5(“‘+2n71)T¢(£2n7273(q)i))D71
X (= DIFS(T,H* ((L9* (9))). (242

For the second choic&33 of super-DB transformations we find, usifig3d) and (90), that the

rh.s. of Eq.(242) becomes equal t&2" 1—X,,_; whereX,,_; is of the same form aX,,_;

(26) with all (adjoint super-eigenfunctions replaced by their DB-transformed counterparts. Thus,
comparing with(25) we conclude that under the second ty[283 of DB transformations on
fermionic SKPr ., m.) super-Lax operators the fermionic isospectral flows are preserved up to

an overall minus sign:
DoL=+{L>""1-Xon_1.L}. (243

The situation with the first type of DB transformatiori227) and (228 on fermionic
SKP®r Mg M) hierarchies is slightly more complicated. First, let us consider the subclass of

SKPr;1,0) hierarchies defined by fermionic super-Lax operatéts-@r+1):

R-1
L=Lr10=DR+ ,Zo vjpDI+dD M. (244

As already shown in Ref. 14, the r.h.s. of EQ42) becomes in this case

2n—2
— 520 (—1)SZZH—2—5((5)D—1(25)*(\1,): _((Z2n—l)7_‘>"(2n71)’ (245
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where we have usedl=®, ® = T5,(L(P)), ¥ = 1 [cf. (222)] and also the identities from Ref.
14:

L3(D)=To(L D)), (L5 H*(W)=(—1)ATHH* ((L3*(W)). (246

Therefore, substituting the first term in the anti-commutatd2#il) with the expressiofi245 we
conclude that for fermioniSKPg.; ¢y hierarchies(244) the fermionic isospectral flow®,, (25
are strictly preservetho overall sign changeunder first type of super-DB transformatiof®21).

In the more general case of fermiorfK P(R;MB'MF) hierarchies withM =Mg+Mg=2 the

r.h.s. of Eq.(242 becomes under the first type of DB transformati¢221)

2n—-2

= 2 (C1TLP @)D NI (V)
s=0

2n—2
) (— )3z 275D ) DY Z9)* (¥)), (247)

M
+ >
i=17#ig

S=

which is not equal to* ((£2"~%)_—X,,_,) due to the opposite signs in front of both sums in
(247). Therefore, fermionic isospectral flovizs, are preserved under first type of super-DB trans-
formations only for the subclas$KPg.; ) (244 of fermionic constrained super-KP hierarchies.

Finally, let us recall that according to Ref. 14 the super-tau functi® undergoes the
following (adjoint)DB transformations:

1
T=T=—, ToT= (248

T _E"

The latter relations are to be contrasted with their counterparts in the ordinary “bosonic’case
whereT=¢7, 7= — 7.

B. Superspace Darboux—Ba “cklund transformations preserving additional symmetries

We are now interested in consistency of super-DB transformatiorﬁt@?(R;MB,MF) con-

strained super-KP hierarchies with the whole algebra of the additional non-isospectral symmetries
(Sec. V, VI and VIIl). Acting with the pertinent additional symmetry flows of positive grades
[(74), (65) and (66)] and of negative gradeg170—(172)] on the DB-transformed super-Lax
operator(216) (we take fermionic super-Lax operator for definiteniess have

(=125 - = (£/12) = (£/12)% = (£/12) =
Opa L=IMyT7.LL 6x% E—{Mf’; L} (249

Here

M%/Z)E 5(J4//2)T¢7—;1+T¢M ‘(A//Z)T(;l
=Ty (M{P($)—-6{P)D 172

M /=1
+ij2:1 Ai(j//Z)SZO (_ 1)5(\j|+/)T¢((DJ((/—1—5)/2))D—1(_1)\i\+5(7—;1)*(\1,i(5/2))'

(250
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MF}{/Z)E 5(}{/2)7-(#7—;1_ T¢M F}{/Z)T(Zl

=Ty Pp=MEP () D 1
M /=1 ’
+ El f-I(J/IZ)SEO (_1)8(\]\+/)T¢((DJ((/—1—S)/2))D—1(_1)|I\+S(7—;1)*(\Pi(5/2));

ij=
(251)

for positive-grade additional symmetries, and

= (=712)_ (=712) 1 (=712) 1
M P= P M P T,

=T MG P ()-8 Pl

2(N+r+1) /-1
+ Zl(J—//z)z (_1)s(|J|+/)T¢( p{ (179 p -1
1,J=1 )

X (=D)NEs(T, My (g2, (252

(=/12)_ (=712)
Fo 5]—'

=78 P MmE P gD g

2(N+r+1) Jo1
+ |;1 ‘/?'J_//Z)Szo (_1)S(|J|+/)7:15(¢.(J_(/_1_S)/2))D_l

= 1 (=712) —1
By T, - T,M5 P,

X (=), M (g2, (253

for negative-grade additional symmetrigecallR=2r+1, M=Mg+M=2N+1).

Now, we can repeat the same steps as in the analysis in Sec. XA of the consistency of
super-DB transformations with the bosonic and fermionic isospectral flows in order to find the
conditions under which theadjoint)DB transformationgrelations(221) and(222) and(223) and
(224)] preserve also the additional non-isospectral symmetriéﬁl@(R;MB,MF) integrable hier-
archies. In other words, we have to find the conditions under which the super-pseudo-differential
operators (250—(253), generating the additional symmetries of the DB-transformed
SKP(R;MB,MF) hierarchy, can be represented in the same forn68sand (66), and (170 and
(171, respectively, with all pertinentadjoint super-eigenfunctions replaced with thédjoint
DB-transformed counterparts. We obtain the following results for fermiSrl(cP(R;MB'MF) hier-
archies(24).

(a) Super-DB transformations of the first typg) ((227)—(229)] preserve(up to an overall
sign change of the fermionic flowshe following subalgebra of additional non-isospectral sym-
metries:

(GL(Mg—1Mg)),®(GL (N+r+1N+r+1))_. (254)

(b) Super-DB transformations of the second tyge ((233—(235] preserveup to an overall
sign change of the fermionic flowshe following subalgebra of additional symmetries:

(GL(Mg,Mp)), ®(GL(N+r,N+r+1))_ (255

(here the positive-grade part includes the Manin—Radul isospectral) flows
For bosonicSKP(R;MB,MF) hierarchies(33) we obtain similar results witti254) and (255
replaced by

(GLlmg-1mp)+ @ (GLysr ntr) - (256)
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and

(Glmg.mp)+ @ (Glnsr—1n+r) -, (257)

respectively.

C. lterations of superspace Darboux—Ba ~cklund transformations and Wronskian-type
super-determinant solutions

The general super-Darboux—@&dund orbit consists of successive applications of the allowed
DB (216) and adjoint-DB(219) transformations as defined in Sec. X#ee Eqs(221)—(238)]. In
particular, pairs of successive DB and adjoint-DB transformations are dafiedy DB transfor-
mations. Let us consider an iteration msuccessive binary DB transformations followed by 2
successive DB transformations applied on arbitrary initial bosonic super-eigenfudction

(n+2m—=1;n) (n+2m—-2;n) (n+3;n) (n+2;n) (n+1;n) (n;n)

(n+2m;n) —
(D ,]:Pmllz ,]:Pn-#m—l 7:03/2 /T‘pn-#l 7:91/2 lz;n
(n;n—1) (n—=1;n—1) (2;1) (1,1 (1;0) (0;0)
><(_T‘v”n—l/zil)* ZPn—l -“(_T%/zil)* %1(_7'1’1/271)* T%((I)). (258

Recall that eaclfadjoiny DB transformation flips the Grassmann parity of the transformed object.
Similarly, let us consider an iteration of successive binary DB transformations followed by
2m+1 successive DB transformations applied on arbitrary initial fermionic super-eigenfunction

F:
(n+2m;n) (n+2m-—1;n) (n+2m—-2;n) (n+3;n) (n+2;n) (n+1;n) (n;n)
(n+2m+1;n) _ .
F %ner %m— 1/2 %ner—l 7;3/2 720n+1 7:/’1/2 Iz:Pn
(n;n—1) (n—1;n—-1) (2;1) (1;1) (1,0 (0;0)

X(=Ty D% Ten 1 (= Ty D T (= Ty D T, (F). (259

The upper indicesk;l) in (258 and (259 and below indicate iteration gfadjoiny DB transfor-
mations consisting ok DB steps and adjoint-DB steps. The objects entering edabjoin) DB
step in(258 and (259 are recurrsively defined as follows:

(kik) (k+1:k)

T, =MD, T, =D, (260
P T b Vi TRy TS
(kK (kik=1) (k—=1;k—1) (2;1) (11 (1,0 (0;0)
H -1 o -1 _ -1
o= ( %k—llz ) ZPk—l ( T¢3/2 )* ZPl( T‘ﬁllz )* T‘Po((’ok)' (261)
1k (k;k) (k;k—=1) (k—=1;k—1) (1;0) (0;0)
+1:k) _ - - -
PR=— (T DT, (T, | Y% Ty (T, D (Yhs 1) (262
for k=1,...n—1, and
(n+2l;n) " 1 (n+2l+1;n) o1 1
— +21; — +21+1;
7:Pn+1 :(’Df'lr‘l*" n)D (n+2rn) » 7:0|+1/2 =(P|(:|_ 1/2 n)D n+2l+1;n)> (263)
P+l Pr+ 112
(n+21n) (n+2l=1;n)(n+21—=2;n) (n+3;n)(n+2;n)(n+1;n) (n;n)
n+2l;n) _
Pn+l - T¢|—1/2 ,]:Dn+l—1 Tﬁpz/z %Jn+l T‘Pllz an
(n;n—1) (n—1;n—1) (2,0 (1,1 (1,0 (0;0)
-1 T -1 _ -1
X(=Ty O T, (=T T (T, Y Ty (ear), (269

Downloaded 20 Sep 2004 to 218.22.21.23. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 43, No. 5, May 2002 Supersymmetric integrable hierarchies of KP type 2581

(n+2l;n) (n+2l-1;n) (n+21—=2;n) (n+3;n) (n+2;n)(n+1;n)(n;n)

(n+2l+1:n) _
P+ 12 ZPnH Zpl—llz 7:Pn+|—1 ZPs/z 7:F’n+1 ZPllz %n
(n;n—1) (n—1;n—1) (2;1) (1;1) (1;0) (0;0)
X(=Ty o, O Ty o (=T ¥ T, (= Ty Y% Ty (014110,

(265

wherel=0,1,..,m—1. In (258-(265 the sets{¢}p o and{e,_ 12", are bosonic/fermionic

super-eigenfunctions, where@g, _ 1.}« are fermionic adjoint super-eigenfunctions. Let us also
stress that DB-transformed superfunctidh@ +2m=%n (259), ¢(1*2 1M (265 and y< ¥

k+ 1/2
(262 are bosonic although the initi#d, ¢, 1, and ¢, 1, are fermionic.
During iteration of (adjoint super-DB transformations we encounter Bereziniésiger-

determinantswhose matrix blocks possess the following special generalized Wronskiarktype
X (m+n) matrix form:

Wﬁw}fn[{ﬁoﬂ{lﬂ}]Ew(kl,(émn[@o v @k—1| P12, - Pn— 172]

0 Pr1
am*1¢o 07m71‘Pk—1
, _ , (266)
Dot eoth) - Dyek-1¥p)
Do @otn-12) = 0 Dy @k-1tn— 1)

where {¢}={¢g,....¢x_1} IS a set ofk bosonic or fermionic superfunctions wheregg}
={d,....n_ 1o} is @ set ofn fermionic superfunctions. The generalized Wronskian-type matrix
(266 is the supersymmetric generalization of the Wronskian-type block matrices entering the
general Darboux-Bzlund determinant solutions for the tau-functions of ordinary “bosonic” con-

strained KP hierarchie€:? In the special case ai=0 (266) reduces to the rectangul&ix m
Wronskian matrix:

®o Or_1
I Q1
Wk,m[QDOa---:(Pk—l]: : . . (267)
t?m_l@() am_l(Pk—l

In Ref. 15 the explicit form of iterations of super-DB transformatiom accompanied by
adjoint-DB transformations, i.e., with=0 in (258 and(259), has been derived:

(2m—=1;0) 2m—2;0)  (3;0) (2;0) (1;0) (0;0)
HeCmO= T T T 7;1 T ’T%(CI))

Cm—112 Pm—1 @30 e1n

Wm+l,m[D9§DO""’D0§DM71’DGCI)] | Wm,m[Dagol/Z’---’DGQDrnf 1/2]
( Wm,m[QDO""’QDrn71] | Wm,m[gol/Z""’QDrn7 1/2] )
Ber I

B ( Wm+l,m+l[§00""’§0rn*l’q)] ' Wm,m+l[§01/2""’§0rn*1/2] )
S e

WomlPo@0s---3Pg@m—11 | W m[ Do@1125-- D@ 1] (269
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(2m;0) (2m—1;0)  (3;0) (2;0) (1;0) (0;0)

(2m—+1;0) —
F B q;m Tﬁ”n—uz "'7;3/2 TGDL 7;1/2 7;0 (F)

B ( Wm+l,m+l[§00""’§orn*1’§om] : Wm,m+l[§01/2""’§0rn*1/2] )

S et

_ Wm+1,m[D0§DO’---’D0§DM71’D9¢m] | Wm,m[D9¢l/2,---’D9§DM7 1/2]

B ( Wm+1,m+1[€00,---,€0m] : Wm+l,m+l[§ol/2""’§0rn*1/2’F:| ) '

S et sttt sttt
Wm+1,m+1[Da€00,---,Da€0m] I Wm+1,m+l[DG§Dl/2""’D9§DM* 1125 Dgl’]

(269

Following similar techniques as in Ref. 15 we can similarly express the getetjing DB
iterations(258 and (259 in the form of ratios of Berezinians containing generalized Wronskian-
type matrix blockg266). The results are as follows:

Ber( WD, b @] 1 Wi, [ean}iun] )
q)(n+2m;n): Wn+m+l,m[D9§DO,---,D0§0n+M71’DGCI)] [ Wm,m[D0¢l/2’---’DG¢M7 1/2]
Ber( Wl ] 1 W et )] )
Wn+m,m[D9§DO""’DGQDnnLrn*l] I Wm,m[Dagol/Z""’DGQDrn7 1/2]
(270
F(n+2m+l;n)
Ber( Wi el enml{91] : Wi Heam{v] )
Wn+m+l,m[D9§DO""’DGQDnnLrn*l’D0§0n+m] | Wm,m[Dagol/Z""’DGQDrn7 1/2]

—(—1)"—— :
Ber( Wi l{ehonal ] L WIS, Heum) PN

Wn+m+1,m+l[D0§DO"'"D0§0n+m] | Wm+1,m+1[D9§01/2""’D9§DM7 1/2’D¢9F:|

(271

with the notations:

{et={eo,. - enim-1t, {e@at={ew2 - m-12t, {AW={¢12, . bn- 1. (272

As above{e} and{¢ ()} are sets of bosonic/fermionic super-eigenfunctions whefrgais a set
of fermionic adjoint super-eigenfunctions of the constrained super-KP hierzSK}R(R;MB,MF)

(24). Let us recall that all pertineriadjoinf super-eigenfunctions are of the forf®4) and (53).
While calculating super-tau functions on the general super-DB orbit we will also need the
following iteration of(adjoiny DB transformations on fermionic adjoint super-eigenfunctighs
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(k+15k) (k;k) (kik—=1) (k—1;k—1) (2;1) (1,1 (1,0 (0;0)
_ -1 “Lyx ... -1 -1
Ve =(= Tﬁ"k )*T‘/’k—l/z (7, )" 7:/’3/2 (ZPl )*ZPl/z( T% )" (We)
— ( _ 1)k+1
D, (@othy) Dy (@k-1t11) D, exthp)
det| ., _ ' L
Dy (@0t 112) Dy (o112 Dy (@b 1)
» Dy (@oVE) Dy (er-1VE) Dy (exVe) (273
®o Pk—-1 Pk
det Dy (eothir) Dy (ek-1411) Dy (et
e . . .
D, (@ot— 112) Dy (ek-1tk—12) Dy (@t 1)

wherek=0,1,..,n—1.

Now, using relationg248 and taking into accoun270), (271 and (273), we derive the
explicit expressions for the super-tau functions of constrained super-KP hierarchies on the general
super-DB orbit:

0;0)
— _=(—1 mn+n(n—1)2
T(n+2m,n) ( )
“ Ber( Wbl ____Y?Eni",_;n?_r_n_[_{f&l_@z}:|:{_‘_ﬂ}_]____)
Wn+m,m[D9§DO EXRR) ,D0§0n+rn7 1] | Wm,m[Da%/z s ’DGQDW[* 1/2] (274)

T(n+2m+l;n),r(0;0)

— (_ 1)mn+n(nfl)/2

XBer( W, Lehen kW] 1 WO, Heumt{vA] )
Wn+m+l,m[D9§DO’---’DGQDnnLrn*l’D9§0n+m]| Wm,m[D0¢l/2,---,DG¢M7 1/2] |

(275

where again notation®72) have been used.

D. Examples: “Super-soliton” solutions

Now, let us write down some explicit examples of Wronskian-type Berezinian solutions for
the superspace tau-functiéd74) and(275. We shall consider the simplest case of a constrained
super-KP hierarchy—th&8K P, .1 ) hierarchy defined by the super-Lax operator:

£E£(1;1’0)2D+f0+®D71\P, (276)

where®, ¥ are bosonidadjoint super-eigenfunctions. We take the initid?:®=const, i.e., the
initial super-Lax operator is the “free” oneC(O?O)EE(l%?)l,fD. The initial “free” super-

eigenfunctiond(®: 9=, satisfies according t27):

ic1> = d,, D ,P,=-D2"" b (277
&tk 07 Ix*0> n*¥0— 0 0
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eg(\)+ eE|>1%'(t|+00|), (278

o— >, x“‘lan)w(x)

n=1

q>0(t,e)=f dx

wheregg(\), ¢e(\) are arbitrary bosoni¢fermionic) “spectral” densities.

Let us consider iterations of pure DB transformatidins., no mixed binary DB transforma-
tions). For the simplesBK P, . ) case this means substituting in the Berezinian expressitigs
and (269:

o =10y,  or_1,=DXD, for k=0,1,...m. (279

It is easy to showt®that in this casé268 and (269 reduce to the following ratios of ordinary
Wronskian determinants:

Wil 0x@a, ..., 00D ] oms 120y Wit 1l Po, - A7)
— ’ T = ’
Wil @g,.... 00" D] Wil 3, @, ...,00 D]

A2m0)_

(280)
Wm[ ©osr s Pm— l] = delvvm,ml: @O v(mel]v

where®d is given by(278). In particular, choosing for the boson(fermionic) “spectral” densi-
ties in Eq. (278 og(A\)==N,ci6(A—\)), or(\)=3N 68N —\;), wherec;,\; and ¢ are
Grassmann-even and Grassmann-odd constants, respectively, we héyg for

N
=3 gB1= 2 o), (281

Ci+
n=1

o— >, x{‘len)ei

Substituting(281) into (280) we obtain the following “super-soliton” solutions for the super-tau
function of simplest constrained super-KP hierar@¥ PR, ., o) (276):

10, Sicijcnci =Nl )Ci- S BB AR )
T = N= = 2
21£j1<“'<imgN(m)CJl'”ijEjl"'Ejm)\jl'”)\ijm()\jl"”’)\jm)
(282
= _ S oAt — a3+ 00)
Ci=Ci+ 0—n>1 )\i gn €, Ei=e =1% ,
Am(Niyyeehi ) =defN Hlapo1, - (283
XI. OUTLOOK

In the present article we have provided a systematic derivation of the full algebra of additional
non-isospectral symmetries of constrairieetluced supersymmetric KP hierarchies of integrable
(“super-soliton”) nonlinear evolution equations iIN=1 superspace, which turns out to be a
semi-direct product of Virasoro algebra with a superloop superalgebra of the form give83n
and(189). We also explicitly constructed the superspace analogsoofstrainegimulti-component
KP hierarchies where the multi-component set of Manin-Radul-type isospectral evolution “times”
can be viewed as special subsets of additional symmetry non-isospectral flows of ordinary one-
component supersymmetric KP hierarchies. We also showed that(cthrestrainegd multi-
component supersymmetric KP hierarchies contain the supersymmetric generalization of Davey—
Stewartson higher-dimensional nonlinear evolution equations. We studied in detail the conditions
for (adjoint super-Darboux—Bzklund transformations to preserve both Manin—Radul isospectral
flows as well as the algebra of additional non-isospectral symmeries of constrained super-KP
hierarchies, and we presented the explicit DarbousckBed solutions for the pertinent super-tau
functions(“super-soliton” solutions.

The results of the present work suggest a number of interesting problems for further research:
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(i) Systematic study of the supersymmetric extended hierarcmasgti-component con-
strained supersymmetric KP hierarchi@stroduced in Sec. VII, which are obtained from
scalar(one-componeljltSKP(R;MB Mp) hierarchies enhanced by Manin—Radul-type subsets

of additional symmetry flows—of both “positive” and “negative” grades. This implies
providing an explicit super-Lax and superspace tau-function description of the Manin-
Radul-type subsets of additional symmetry flows, as it has been done in Refs. 28, and 29
for the ordinary “bosonic” case.

(i) Revealing other physically interesting nonlinear systems contained within the multi-
component constrained supersymmetric KP hierarchies besides the supersymmetric
Davey—Stewartson systefBec. VI, such as supersymmetric extensions of h@ave
resonant wave system, supersymmetric Toda lattice, etc.

(i) Systematic reformulation of the results of the present article about additional non-
isospectral symmetries, obtained in the framework of Sato super-pseudo-differential opera-
tor formalism, within the supersymmetric generalization of the Drinfeld-Sokolov algebraic
“dressing” approach(for initial steps in this direction, see Ref. 37

(iv) Systematic study of the physical properties and significance of the new very broad class of
super-soliton-like solutions obtained in Sec. X above.
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